已知⊙O的半徑為2,直線l上有一點(diǎn)P滿足OP=2,則直線l與⊙O的位置關(guān)系是________.

相切或相交
分析:根據(jù)直線與圓的位置關(guān)系來(lái)判定.判斷直線和圓的位置關(guān)系:①直線l和⊙O相交?d<r;②直線l和⊙O相切?d=r;③直線l和⊙O相離?d>r.分OP垂直于直線l,OP不垂直直線l兩種情況討論.
解答:當(dāng)OP垂直于直線l時(shí),即圓心O到直線l的距離d=2=r,⊙O與l相切;
當(dāng)OP不垂直于直線l時(shí),即圓心O到直線l的距離d<2=r,⊙O與直線l相交.
故直線l與⊙O的位置關(guān)系是相切或相交.
故答案為:相切或相交.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系.解決此類問(wèn)題可通過(guò)比較圓心到直線距離d與圓半徑大小關(guān)系完成判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、已知⊙O1的半徑為3,⊙O2的半徑為2,若⊙O1與⊙O2相切,則O1,O2的距離為
5或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O的半徑為2,以⊙O的弦AB為直徑作⊙M,點(diǎn)C是⊙O優(yōu)弧
AB
上的一個(gè)動(dòng)點(diǎn)(不與精英家教網(wǎng)點(diǎn)A、點(diǎn)B重合).連接AC、BC,分別與⊙M相交于點(diǎn)D、點(diǎn)E,連接DE.若AB=2
3

(1)求∠C的度數(shù);
(2)求DE的長(zhǎng);
(3)如果記tan∠ABC=y,
AD
DC
=x(0<x<3),那么在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,試用含x的代數(shù)式表示y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O的半徑為4,A為線段PO的中點(diǎn),當(dāng)OP=10時(shí),點(diǎn)A與⊙O的位置關(guān)系為( 。
A、在圓上B、在圓外C、在圓內(nèi)D、不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知球的半徑為R=0.53,根據(jù)球的體積公式V=
43
πR3
,求球體的體積(π取3.14,保留兩個(gè)有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知圓的半徑為4cm,直線和圓相離,則圓心到直線的距離d的取值范圍是
d>4cm
d>4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案