精英家教網 > 初中數學 > 題目詳情
(2005•福州)下列根式中,與是同類二次根式的是( )
A.
B.
C.
D.
【答案】分析:根據同類二次根式的定義解答即可.
解答:解:A、=2被開方數不同,不是同類二次根式;
B、=被開方數不同,不是同類二次根式;
C、=被開方數不同,不是同類二次根式;
D、=2,與被開方數相同,是同類二次根式.
故選D.
點評:此題主要考查了同類二次根式的定義:即化成最簡二次根式后,被開方數相同的二次根式叫做同類二次根式.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點C,C點關于拋物線對稱軸的對稱點為C′點.
(1)求C點,C′點的坐標(可用含m的代數式表示);
(2)如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C,C′,P,Q為頂點的四邊形是平行四邊形,求Q點和P點的坐標(可用含m的代數式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

科目:初中數學 來源:2006年福建省泉州市晉江市初中學業(yè)質量檢查數學試卷(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點C,C點關于拋物線對稱軸的對稱點為C′點.
(1)求C點,C′點的坐標(可用含m的代數式表示);
(2)如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C,C′,P,Q為頂點的四邊形是平行四邊形,求Q點和P點的坐標(可用含m的代數式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

科目:初中數學 來源:2005年福建省福州市中考數學試卷(課標卷)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點C,C點關于拋物線對稱軸的對稱點為C′點.
(1)求C點,C′點的坐標(可用含m的代數式表示);
(2)如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C,C′,P,Q為頂點的四邊形是平行四邊形,求Q點和P點的坐標(可用含m的代數式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

科目:初中數學 來源:2005年福建省福州市中考數學試卷(大綱卷)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點C,C點關于拋物線對稱軸的對稱點為C′點.
(1)求C點,C′點的坐標(可用含m的代數式表示);
(2)如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C,C′,P,Q為頂點的四邊形是平行四邊形,求Q點和P點的坐標(可用含m的代數式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

同步練習冊答案