隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?
【答案】分析:(1)可根據(jù)圖象利用待定系數(shù)法求解函數(shù)解析式;
(2)根據(jù)總利潤=樹木利潤+花卉利潤,列出函數(shù)關系式,再求函數(shù)的最值.
解答:解:(1)設y1=kx,由圖①所示,函數(shù)y1=kx的圖象過(1,2),
所以2=k•1,k=2,
故利潤y1關于投資量x的函數(shù)關系式是y1=2x,
∵該拋物線的頂點是原點,
∴設y2=ax2
由圖②所示,函數(shù)y2=ax2的圖象過(2,2),
∴2=a•22,,
故利潤y2關于投資量x的函數(shù)關系式是:y=x2

(2)設這位專業(yè)戶投入種植花卉x萬元(0≤x≤8),則投入種植樹木(8-x)萬元,他獲得的利潤是z萬元,根據(jù)題意,
得z=2(8-x)+x2=x2-2x+16=(x-2)2+14,
當x=2時,z的最小值是14,
∵0≤x≤8,
∴-2≤x-2≤6,
∴(x-2)2≤36,
(x-2)2≤18,
(x-2)2+14≤18+14=32,
即z≤32,此時x=8,
答:當x=8時,z的最大值是32.
點評:本題第(1)個問題是已知一次函數(shù)和二次函數(shù)的圖象,求函數(shù)的解析式,觀察兩個函數(shù)的圖象可知,前者是正比例函數(shù),后者是二次函數(shù),頂點是(0,0),利用待定系數(shù)法,先設兩個函數(shù)的解析式,再將P(1,2),Q(2,2)代入相應的解析式求出參數(shù)即可;第(2)個問題是已知自變量的取值范圍求二次函數(shù)的最值,屬于二次函數(shù)的條件最值問題.這類試題一般先將函數(shù)解析式配方,將函數(shù)解析式變成頂點形式,找出頂點坐標和對稱軸方程,結合自變量的取值范圍,畫出函數(shù)圖象(拋物線的一部分),根據(jù)拋物線的對稱性、開口方向,確定函數(shù)的最大(或最。┲担灰酥苯佑米钪倒,這種解題方法體現(xiàn)了數(shù)學中的數(shù)形結合的思想,它的優(yōu)點是直觀形象,避免死記公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》?碱}集(16):2.6 何時獲得最大利潤(解析版) 題型:解答題

隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:第6章《二次函數(shù)》常考題集(18):6.4 二次函數(shù)的應用(解析版) 題型:解答題

隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(17):23.5 二次函數(shù)的應用(解析版) 題型:解答題

隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年江蘇省蘇州市高新區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

隨著綠城南寧近幾年城市建設的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資量x成正比例關系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

同步練習冊答案