【題目】觀察下表

我們把某格中字母和所得的多項(xiàng)式稱(chēng)為特征多項(xiàng)式,例如第1格的“特征多項(xiàng)式”為4x+y,回答下列問(wèn)題:

(1)第3格的“特征多項(xiàng)式”為 ,第4格的“特征多項(xiàng)式”為 ,第n格的“特征多項(xiàng)式”為 ;

(2)若第1格的“特征多項(xiàng)式”的值為-10,第2格的“特征多項(xiàng)式”的值為-16,求x,y的值.

【答案】(1),,;(2),

【解析】

試題分析:(1)仔細(xì)觀察每格的特征多項(xiàng)式的特點(diǎn),找到規(guī)律,利用規(guī)律求得答案即可;

(2)根據(jù)題意列出二元一次方程組,求得x、y的值即可.

試題解析:(1)觀察圖形發(fā)現(xiàn):第1格的“特征多項(xiàng)式”為 4x+y,

2格的“特征多項(xiàng)式”為 8x+4y,

3格的“特征多項(xiàng)式”為 12x+9y,

4格的“特征多項(xiàng)式”為16x+16y,

第n格的“特征多項(xiàng)式”為;

(2)∵第1格的“特征多項(xiàng)式”的值為﹣10,第2格的“特征多項(xiàng)式”的值為﹣16,

依題意得:解之得:,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):

阿基米德折弦定理

阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并成為三大數(shù)學(xué)王子.

阿拉伯Al﹣Binmi(973﹣1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.

阿基米德折弦定理:如圖1,AB和BC是O的兩條弦(即折線ABC是圓的一條折弦),BCAB,M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過(guò)程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.

M是的中點(diǎn),MA=MC.

任務(wù):

(1)請(qǐng)按照上面的證明思路,寫(xiě)出該證明的剩余部分;

(2)填空:如圖3,已知等邊ABC內(nèi)接于O,AB=2,D為上一點(diǎn),ABD=45°,AEBD于點(diǎn)E,則BDC的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱(chēng)為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是(

A.6 B.8 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】α是銳角,若sinαcos15°,則α_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若五條線段的長(zhǎng)分別是1cm,2cm,3cm,4cm,5cm,則以其中三條線段為邊可構(gòu)成______個(gè)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°,∠DAB=45°.
(1)求∠DAC的度數(shù);
(2)求證:DC=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)的加法法則:同號(hào)相加時(shí),取 的符號(hào),并把它們的絕對(duì)值相加.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=13cm,AC=20cm,BC邊上的高為12cm,則△ABC的面積為cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案