【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題分析:(1)首先連接OD,由BC是⊙O的切線,可得∠ABC=90°,又由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長(zhǎng),∠BOD的度數(shù),又由S陰影=S扇形OBD-S△BOD,即可求得答案.
試題解析:(1)連接OD,
∵BC是⊙O的切線,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵點(diǎn)D在⊙O上,
∴CD為⊙O的切線;
(2)過(guò)點(diǎn)O作OF⊥BD于點(diǎn)F,
在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF= ,
∵OF⊥BD,
∴BD=2BF=2,∠BOD=2∠BOF=120°,
∴S陰影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】?jī)羲畽C(jī)的核心部件就是水處理反滲透膜,水處理反滲透膜就像是一個(gè)篩子,它的孔徑只有0.11納米,水在壓力的作用下一層層過(guò)濾,離子以上的雜質(zhì)像抗生素、重金屬、細(xì)菌等都能過(guò)濾掉,0.11納米即0.00000000011米,將0.11納米用科學(xué)記數(shù)法表示為( )
A.1.1×10﹣9米
B.1.1×10﹣10米
C.11×10﹣9米
D.0.11×10﹣9米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決“最后一公里一的交通接駁同題,蘇州市投放了大量公租自行車供 市民使用到2014年底,全市已有公租自行車25 000輛,租賃點(diǎn)600個(gè),預(yù)計(jì)到2016年底,全市將有公租自行車50 000輛,并且平均每個(gè)租賃點(diǎn)的公租自行車數(shù)量是2014年底平均每個(gè)租賃點(diǎn)的公租自行車數(shù)量的1.2倍,預(yù)計(jì)到2016年底,全市將有租賃點(diǎn)多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E.
(1) 求證:AC平分∠DAB;
(2) 連接BE交AC于點(diǎn)F,若cos∠CAD=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個(gè),黃球有1個(gè),從中任意捧出1球是紅球的概率為
(1)試求袋中綠球的個(gè)數(shù);
(2)第1次從袋中任意摸出l球(不放回),第2次再任意摸出1球,請(qǐng)你用畫(huà)樹(shù)狀圖或列表格的方法,求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年度中央機(jī)關(guān)及其直屬機(jī)構(gòu)公務(wù)員招考網(wǎng)上報(bào)名已經(jīng)結(jié)束,據(jù)初步統(tǒng)計(jì),網(wǎng)上報(bào)名人數(shù)約有211.5萬(wàn)人,數(shù)據(jù)211.5萬(wàn)用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題
(1)【問(wèn)題情境】
徐老師給愛(ài)好學(xué)習(xí)的小敏和小捷提出這樣一個(gè)問(wèn)題:
如圖1,△ABC中,∠B=2∠C,AD是∠BAC的平分線.求證:AB+BD=AC
小敏的證明思路是:在AC上截取AE=AB,連接DE.(如圖2)…
小捷的證明思路是:延長(zhǎng)CB至點(diǎn)E,使BE=AB,連接AE. 可以證得:AE=DE(如圖3)…
請(qǐng)你任意選擇一種思路繼續(xù)完成下一步的證明.
(2)【變式探究】
“AD是∠BAC的平分線”改成“AD是BC邊上的高”,其它條件不變.(如圖4),AB+BD=AC成立嗎?若成立,請(qǐng)證明;若不成立,寫(xiě)出你的正確結(jié)論,并說(shuō)明理由.
(3)【遷移拓展】
△ABC中,∠B=2∠C. 求證:AC2=AB2+ABBC. (如圖5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商店某天銷售了14件襯衫,其領(lǐng)口尺寸統(tǒng)計(jì)如表:
領(lǐng)口尺寸(單位:cm) | 38 | 39 | 40 | 41 | 42 |
件數(shù) | 1 | 5 | 3 | 3 | 2 |
則這14件襯衫領(lǐng)口尺寸的眾數(shù)與中位數(shù)分別是( )
A.39cm、39cm
B.39cm、39.5cm
C.39cm、40cm
D.40cm、40cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com