如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長(zhǎng)線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

【答案】分析:(1)連接PC.根據(jù)直角三角形的性質(zhì)可得PC=EF=PA.運(yùn)用“SSS”證明△APD≌△CPD,得∠ADP=∠CDP;
(2)作PH⊥CF于H點(diǎn).分別求DF和PH的長(zhǎng),再計(jì)算面積.設(shè)DF=x,在Rt△EFC中,∠CEF=60°,運(yùn)用勾股定理可求DF;根據(jù)三角形中位線定理求PH.
解答:(1)證明:連接PC.
∵ABCD是正方形,
∴∠ABE=∠ADF=90°,AB=AD.
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴∠BAE=∠DAF,AE=AF.
∴∠EAF=∠BAD=90°.
∵P是EF的中點(diǎn),
∴PA=EF,PC=EF,
∴PA=PC.
又∵AD=CD,PD=PD(公共邊),
∴△PAD≌△PCD,(SSS)
∴∠ADP=∠CDP,即DP平分∠ADC;

(2)作PH⊥CF于H點(diǎn).
∵P是EF的中點(diǎn),
∴PH=EC.
設(shè)EC=x.
由(1)知△EAF是等腰直角三角形,
∴∠AEF=45°,
∴∠FEC=180°-45°-75°=60°,
∴EF=2x,F(xiàn)C=x,BE=2-x.
在Rt△ABE中,22+(2-x)2=(x)2,即x2+4x-8=0,
解得 x1=-2-2(舍去),x2=-2+2
∴PH=-1+,F(xiàn)D=(-2+2)-2=-2+4.
∴S△DPF=(-2+4)×=3-5.
點(diǎn)評(píng):此題考查正方形、特殊直角三角形的性質(zhì)及全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長(zhǎng)線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請(qǐng)畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長(zhǎng)為2a,當(dāng)CE=
a
a
時(shí),S△FGE=S△FBE;當(dāng)CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時(shí),S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的對(duì)角線交于O,過(guò)O點(diǎn)作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過(guò)點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
(1)試說(shuō)明OE=OF;
(2)當(dāng)AE=AB時(shí),過(guò)點(diǎn)E作EH⊥BE交AD邊于H.若該正方形的邊長(zhǎng)為1,求AH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案