【題目】如下圖,已知直線分別與軸,軸交于兩點(diǎn),直線于點(diǎn).

1)求,兩點(diǎn)的坐標(biāo);

2)如圖1,點(diǎn)E是線段OB的中點(diǎn),連結(jié)AE,點(diǎn)F是射線OG上一點(diǎn), 當(dāng),且時(shí),求的長;

3)如圖2,若,過點(diǎn)作,交軸于點(diǎn),此時(shí)在軸上是否存在點(diǎn),使,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】1A4,0),B0,-4)(2EF=3

【解析】

1)根據(jù)直線與坐標(biāo)軸的坐標(biāo)特點(diǎn)即可求解;

2)連結(jié)BF,根據(jù)題意可證明△AOE≌△OBF,得到BF=OE,求出BF=2,再利用在RtBEF中,由勾股定理求得EF=

3)根據(jù)平行求出直線BC的函數(shù)表達(dá)式為 得到C(-3,0),OC=3再分當(dāng)M1A點(diǎn)左側(cè),當(dāng)M點(diǎn)在A點(diǎn)右側(cè)分別進(jìn)行求解.

(1) 直線軸,軸分別相交于A,B兩點(diǎn),

時(shí), ;時(shí),

A40),B0-4.

2)連結(jié)BF,由(1) ,得OA=OB,∠AOB=,

BOF+AOF=,

OFAE

AOF+EAO=.

BOF=EAO,

AE=OFOA=OB,

AOE≌△OBF.

OBF=AOE=BF=OE.

EOB的中點(diǎn) ,

OE=OB=2.

BF=2.

RtBEF中,由勾股定理,EF2=BF2+BE2=22+22=8.

EF>0,

EF=.

(3)BCOG,

∴直線BC的函數(shù)表達(dá)式為

B(0-4),

.

.

C(-3,0).

OC=3.

故①當(dāng)M1A點(diǎn)左側(cè),在OA上取OM1=3,則M1,C關(guān)于y軸對稱.

∴∠MBO=CBO.

OA=OB,∠AOB=90°,

∴∠ABO=45°.

而∠M1BO+ABM1=ABO=45°,

即∠CBO+ABM1=45°.

M1即為所求的點(diǎn).

②當(dāng)M點(diǎn)在A點(diǎn)右側(cè),滿足∠CBO+ABM2=45°時(shí),又∠ABO=45°,

∴∠CBM2=CBO+ABM2+ABO=45°+45°=90°.

設(shè)M2(m,0),

RtCBM2RtBOM2中,由勾股定理,得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家今年種植的紅燈櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(kg)與上市時(shí)間x(天)的函數(shù)關(guān)系如圖1,櫻桃價(jià)格z(元/kg)與上市時(shí)間x(天)的函數(shù)關(guān)系式如圖2.

(1)求小明家櫻桃的日銷售量y與上市時(shí)間x的函數(shù)解析式.

(2)求當(dāng)5≤x≤20時(shí),櫻桃的價(jià)格z與上市時(shí)間x的函數(shù)解析式.

(3)求哪一天的銷售金額達(dá)到最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、C、N三點(diǎn)在同一直線上,在△ABC中,∠A:ABC:ACB=3:5:10,若△MNC≌△ABC,則∠BCM:BCN=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在垃圾分類宣傳培訓(xùn)后,對學(xué)生知曉情況進(jìn)行了一次測試,其測試成績按照標(biāo)準(zhǔn)劃分為四個(gè)等級:A 優(yōu)秀,B 良好,C 合格,D 不合格.為了了解該校學(xué)生的成績狀況,對在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查結(jié)果繪制成了以下兩幅不完整的統(tǒng)計(jì)圖:

請結(jié)合統(tǒng)計(jì)圖回答下列問題:

(1)該校抽樣調(diào)查的學(xué)生人數(shù)為 人;

(2)請補(bǔ)全條形統(tǒng)計(jì)圖;

(3)樣本中,學(xué)生成績的中位數(shù)所在等級是 ;(填“A”“B”、“C”“D”

(4)該校共有學(xué)生3000人,估計(jì)全校測試成績?yōu)閮?yōu)秀和良好的學(xué)生共有 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=kx(k0)的圖象與x軸相交所成的銳角為70°,定點(diǎn)A的坐標(biāo)為(0,8),P為y軸上的一個(gè)動(dòng)點(diǎn),M、N為函數(shù)y=kx(k0)的圖象上的兩個(gè)動(dòng)點(diǎn),則AM+MP+PN的最小值為(  )

A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB分別與兩坐標(biāo)軸交于點(diǎn)A(6,0),B(0,12),點(diǎn)C的坐標(biāo)為(3,0)

(1)求直線AB的解析式;

(2)在線段AB上有一動(dòng)點(diǎn)P.

過點(diǎn)P分別作x,y軸的垂線,垂足分別為點(diǎn)E,F(xiàn),若矩形OEPF的面積為16,求點(diǎn)P的坐標(biāo).

連結(jié)CP,是否存在點(diǎn)P,使ACP與AOB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時(shí)間如表:

時(shí)間(分鐘)

里程數(shù)(公里)

車費(fèi)(元)

小明

8

8

12

小剛

12

10

16

(1)求x,y的值;

(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過程,請補(bǔ)充完整:在函數(shù)y|x|2中,自變量x可以是任意實(shí)數(shù);

Ⅰ如表是yx的幾組對應(yīng)值.

y

3

2

1

0

1

2

3

x

1

0

1

2

1

0

m

①m   ;

An8),B108)為該函數(shù)圖象上不同的兩點(diǎn),則n   

Ⅱ如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:

該函數(shù)的最小值為   ;

該函數(shù)的另一條性質(zhì)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線軸交于點(diǎn)A,頂點(diǎn)為點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于拋物線的對稱軸對稱.

1)求直線BC的解析式;

2)點(diǎn)D在拋物線上,且點(diǎn)D的橫坐標(biāo)為4.將拋物線在點(diǎn)A,D之間的部分(包含點(diǎn)AD)記為圖象G,若圖象G向下平移)個(gè)單位后與直線BC只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案