(2013•南寧)如圖,AB是⊙O的直徑,弦CD交AB于點E,且AE=CD=8,∠BAC=
1
2
∠BOD,則⊙O的半徑為( 。
分析:先根據(jù)∠BAC=
1
2
∠BOD可得出
BC
=
BD
,故可得出AB⊥CD,由垂徑定理即可求出DE的長,再根據(jù)勾股定理即可得出結(jié)論.
解答:解:∵∠BAC=
1
2
∠BOD,
BC
=
BD

∴AB⊥CD,
∵AE=CD=8,
∴DE=
1
2
CD=4,
設(shè)OD=r,則OE=AE-r=8-r,
在Rt△ODE中,OD=r,DE=4,OE=8-r,
∵OD2=DE2+OE2,即r2=42+(8-r)2,解得r=5.
故選B.
點評:本題考查的是垂徑定理及圓周角定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,-1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,-2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時,直線y=kx與x軸重合,求出此時
1
AM
+
1
BN
的值;
②試說明無論k取何值,
1
AM
+
1
BN
的值都等于同一個常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,圓錐形的煙囪底面半徑為15cm,母線長為20cm,制作這樣一個煙囪帽所需要的鐵皮面積至少是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,在菱形ABCD中,AC為對角線,點E、F分別是邊BC、AD的中點.
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南寧)如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點D,DE⊥AC于點E,BE交⊙O于點F,連接AF,AF的延長線交DE于點P.
(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長.

查看答案和解析>>

同步練習(xí)冊答案