(2009•達(dá)州)如圖,在邊長為2cm的正方形ABCD中,點Q為BC邊的中點,點P為對角線AC上一動點,連接PB、PQ,則△PBQ周長的最小值為    cm(結(jié)果不取近似值).
【答案】分析:由于點B與點D關(guān)于AC對稱,所以如果連接DQ,交AC于點P,那么△PBQ的周長最小,此時△PBQ的周長=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先計算出DQ的長度,再得出結(jié)果.
解答:解:連接DQ,交AC于點P,連接PB、BD,BD交AC于O.
∵四邊形ABCD是正方形,
∴AC⊥BD,BO=OD,CD=2cm,
∴點B與點D關(guān)于AC對稱,
∴BP=DP,
∴BP+PQ=DP+PQ=DQ.
在Rt△CDQ中,DQ===cm,
∴△PBQ的周長的最小值為:BP+PQ+BQ=DQ+BQ=+1(cm).
故答案為:(+1).
點評:根據(jù)兩點之間線段最短,可確定點P的位置.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年北京市宣武區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•達(dá)州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標(biāo)為(-2,4),點B的橫坐標(biāo)為-4.
(1)試確定反比例函數(shù)的關(guān)系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•達(dá)州)如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側(cè)),過點A的直線交拋物線于另一點C,點C的坐標(biāo)為(-2,6).
(1)求a的值及直線AC的函數(shù)關(guān)系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(biāo)(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2009•達(dá)州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標(biāo)為(-2,4),點B的橫坐標(biāo)為-4.
(1)試確定反比例函數(shù)的關(guān)系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市采荷中學(xué)中考數(shù)學(xué)模擬試卷(5月份)(解析版) 題型:解答題

(2009•達(dá)州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標(biāo)為(-2,4),點B的橫坐標(biāo)為-4.
(1)試確定反比例函數(shù)的關(guān)系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省達(dá)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•達(dá)州)如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側(cè)),過點A的直線交拋物線于另一點C,點C的坐標(biāo)為(-2,6).
(1)求a的值及直線AC的函數(shù)關(guān)系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(biāo)(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案