化簡
2x-y-z
x2-xy-xz+yz
+
2y-x-z
y2-xy-yz+xz
+
2z-x-y
z2-xz-yz+xy
分析:先把分母分解得出
(x-y)+(x-z)
(x-y)(x-z)
+
(y-x)+(y-z)
(y-x)(y-z)
+
(z-x)+(z-y)
(z-x)(z-y)
,根據(jù)分式的除法得出
1
x-z
+
1
x-y
+
1
y-z
+
1
y-x
+
1
z-y
+
1
z-x
,把互為相反數(shù)的數(shù)相加即可.
解答:解:原式=
(x-y)+(x-z)
(x-y)(x-z)
+
(y-x)+(y-z)
(y-x)(y-z)
+
(z-x)+(z-y)
(z-x)(z-y)

=
1
x-z
+
1
x-y
+
1
y-z
+
1
y-x
+
1
z-y
+
1
z-x

=
1
x-z
-
1
x-z
+
1
x-y
-
1
x-y
+
1
y-z
-
1
y-z

=0+0+0
=0.
點評:本題考查了分式的加減混合運算,題目比較典型,并且有一定的難度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

化簡
2x-y-z
x2-xy-xz+yz
+
2y-x-z
y2-xy-yz+xz
+
2z-x-y
z2-xz-yz+xy

查看答案和解析>>

同步練習冊答案