(2000•荊門)如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為( )

A.1
B.
C.
D.
【答案】分析:本題是要在MN上找一點P,使PA+PB的值最小,設(shè)A′是A關(guān)于MN的對稱點,連接A′B,與MN的交點即為點P.此時PA+PB=A′B是最小值,可證△OA′B是等腰直角三角形,從而得出結(jié)果.
解答:解:作點A關(guān)于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,
連接OA′,AA′.
∵點A與A′關(guān)于MN對稱,點A是半圓上的一個三等分點,
∴∠A′ON=∠AON=60°,PA=PA′,
∵點B是弧AN^的中點,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
∴PA+PB=PA′+PB=A′B=
故選C.
點評:正確確定P點的位置是解題的關(guān)鍵,確定點P的位置這類題在課本中有原題,因此加強課本題目的訓練至關(guān)重要.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2000•荊門)如圖在直角坐標系xOy中,A、B是x軸上兩點,以AB為直徑的圓與y軸交于點C,設(shè)A、B、C的拋物線的解析式為y=且方程=0的兩根的倒數(shù)和為
(1)求n的值;
(2)求m的值和A、B、C三點的坐標;
(3)點P、Q分別從A、O兩點同時出發(fā),以相同的速度沿AB、OC向B、C運動,連接PQ并延長,與BC交于點M,設(shè)AP=k,問是否存在這樣的k值,使以P、B、M為頂點的三角形與△ABC相似?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•荊門)如圖在直角坐標系xOy中,A、B是x軸上兩點,以AB為直徑的圓與y軸交于點C,設(shè)A、B、C的拋物線的解析式為y=且方程=0的兩根的倒數(shù)和為
(1)求n的值;
(2)求m的值和A、B、C三點的坐標;
(3)點P、Q分別從A、O兩點同時出發(fā),以相同的速度沿AB、OC向B、C運動,連接PQ并延長,與BC交于點M,設(shè)AP=k,問是否存在這樣的k值,使以P、B、M為頂點的三角形與△ABC相似?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年湖北省荊門市中考數(shù)學試卷(解析版) 題型:解答題

(2000•荊門)如圖在直角坐標系xOy中,A、B是x軸上兩點,以AB為直徑的圓與y軸交于點C,設(shè)A、B、C的拋物線的解析式為y=且方程=0的兩根的倒數(shù)和為
(1)求n的值;
(2)求m的值和A、B、C三點的坐標;
(3)點P、Q分別從A、O兩點同時出發(fā),以相同的速度沿AB、OC向B、C運動,連接PQ并延長,與BC交于點M,設(shè)AP=k,問是否存在這樣的k值,使以P、B、M為頂點的三角形與△ABC相似?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:解答題

(2000•荊門)如圖,以Rt△ABC的直角邊BC為直徑畫半圓,交斜邊AB于D,若AC=,BD=,求圖中陰影部分面積(π取3.14,取1.73,結(jié)果精到0.1)

查看答案和解析>>

同步練習冊答案