A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方位角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.

 

 

【答案】

AB不穿過風景區(qū).理由見解析。

【解析】

分析:首先過C作CD⊥AB與D,由題意得:∠ACD=α,∠BCD=β,即可得在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,繼而可得CD•tanα+CD•tanβ=AB,則可求得CD的長,即可知連接AB高速公路是否穿過風景區(qū)。

解:AB不穿過風景區(qū).理由如下:

如圖,過C作CD⊥AB于點D,

根據(jù)題意得:∠ACD=α,∠BCD=β,

則在Rt△ACD中,AD=CD•tanα,

在Rt△BCD中,BD=CD•tanβ,

∵AD+DB=AB,∴CD•tanα+CD•tanβ=AB。

(千米)。

∵CD=50>45,∴高速公路AB不穿過風景區(qū)。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•荊門)A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方位角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方位角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方位角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖北省荊門市中考數(shù)學試卷(解析版) 題型:解答題

A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方位角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.

查看答案和解析>>

同步練習冊答案