【題目】閱讀下列材料: 解答“已知x﹣y=2,且x>1,y<0,試確定x+y的取值范圍”有如下解法:
解:∵x﹣y=2,又∵x>1,∴y+2>1,即y>﹣1
又y<0,∴﹣1<y<0.…①
同理得:1<x<2.…②
由①+②得﹣1+1<y+x<0+2,∴x+y的取值范圍是0<x+y<2.
請按照上述方法,完成下列問題:
已知關于x、y的方程組 的解都為非負數(shù).
(1)求a的取值范圍;
(2)已知2a﹣b=1,且,求a+b的取值范圍;
(3)已知a﹣b=m(m是大于1的常數(shù)),且b≤1,求2a+b最大值.(用含m的代數(shù)式表示)

【答案】
(1)解:因為關于x、y的方程組 的解都為非負數(shù),

解得:

可得: ,

解得:a≥2


(2)解:由2a﹣b=1,

可得: ,

可得: ,

解得:b≥3,

所以a+b≥5


(3)解: ,

所以m+b≥2,

可得: ,

可得:2﹣m≤b≤1,

同理可得:2≤a≤1+m,

所以可得:6﹣m≤2a+b≤3+2m,

最大值為3+2m


【解析】(1)先把a當作已知求出x、y的值,再根據(jù)x、y的取值范圍得到關于a的一元一次不等式組,求出a的取值范圍即可;(2)根據(jù)閱讀材料所給的解題過程,分別求得a、b的取值范圍,然后再來求a+b的取值范圍;(3)根據(jù)(1)的解題過程求得a、b取值范圍;結合限制性條件得出結論即可.
【考點精析】根據(jù)題目的已知條件,利用二元一次方程組的解和一元一次不等式組的應用的相關知識可以得到問題的答案,需要掌握二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解;1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)今世界上較先進的計算機顯卡每秒可繪制出27000000個三角形,且顯示逼真,用科學記數(shù)法表示這種顯卡每秒繪制出三角形個數(shù)(
A.27×106
B.0.27×108
C.2.7×107
D.270×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:m2﹣4=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某市有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座雕像,

(1)求綠化的面積是多少平方米;
(2)并求出當a=5,b=3時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( 。

A. b5 b 5=2 b 5B. (a- b)5 ·(b - a)4=( a - b)9

C. a +2 a 2=3 a 3D. (a n-1)3 = a 3n-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,欲用一塊面積為800cm2的等腰梯形彩紙作風箏,用竹條作梯形的對角線且對角線恰好互相垂直,那么需要竹條多少厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】人寫字時眼睛和筆端的距離超過30cm時則符合保護視力的要求.圖1是一位同學的坐姿,把她的眼睛B、肘關節(jié)C和筆端A的位置關系抽象成圖2的△ABC,BC=30cm,AC=22cm,∠ACB=530,她的這種坐姿符合保護視力的要求嗎?請說明理由.(參考數(shù)據(jù):sin530≈0.8,cos530≈0.6,tan530≈1.3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》(分別用字母A,B,C依次表示這三個誦讀材料),將A,B,C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小明和小亮參加誦讀比賽,比賽時小明先從中隨機抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小亮從中隨機抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進行誦讀比賽.

(1)小明誦讀《論語》的概率是   .

(2)請用列表法或畫樹狀圖法求小明和小亮誦讀兩個不同材料的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A.a+2a2=3a3
B.(a32=a6
C.a3a2=a6
D.a6÷a2=a3

查看答案和解析>>

同步練習冊答案