精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點E、F分別是邊AB、CD的中點,AF=CE.求證:AD=BC.
分析:首先判定兩個三角形是直角三角形,然后證得CD=AB,從而可以利用HL證明兩個直角三角形全等,證得結論.
解答:證明:∵AC⊥BC,
∴∠ACB=90°.
∵AD∥BC,
∴∠CAD=∠ACB=90°.(2分)
∵點E、F分別是AB、CD的中點,
∴CE=
1
2
AB
,AF=
1
2
CD
.(2分)
∵AF=CE,
∴CD=AB.(2分)
在Rt△CDA和Rt△ABC中,
AC=CA
CD=AB
(2分)
∴Rt△CDA≌Rt△ABC.(2分)
∴AD=BC.(2分)
點評:本題考查了三角形的中位線定理及直角三角形全等的判定,解題的關鍵是判定直角三角形并證明全等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點E在BC上,點F在AD上,AF=CE,EF與對角線BD相交于點O.求證:O是BD的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請設計兩種不同的分法,將四邊形ABCD分割成四個三角形,使得分割成的每個三角形都是等腰三角形.畫法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認為是兩種不同的分法;
(2)畫圖工具不限,但要求畫出分割線段;
(3)標出能夠說明不同分法所得三角形的內角度數(shù),例如樣圖;
(4)不要求寫出畫法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當BE⊥AD于E時,試證明:BE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F.
求證:∠DEN=∠F.

查看答案和解析>>

同步練習冊答案