精英家教網(wǎng)從甲,乙兩題中選做一題,如果兩題都做,只以甲題計分.
題甲:如圖,梯形ABCD中,AD∥BC,點E是邊AD的中點,連接BE交AC于點F,BE的延長線交CD的延長線于點G.
(1)求證:
GE
GB
=
AE
BC
;
(2)若GE=2,BF=3,求線段EF的長.
題乙:如圖,反比例函數(shù)y=
k
x
的圖象,當-4≤x≤-1時,-4≤y≤-1.
(1)求該反比例函數(shù)的解析式;
(2)若M,N分別在反比例函數(shù)圖象的兩支上,請指出什么情況下線段MN最短(不需證明),并求出線段MN長度的取精英家教網(wǎng)值范圍.
分析:甲:(1)因為AD∥BC,所以△GED∽△GBC,所以兩三角形的對應邊成比例;又點E是邊AD的中點,AE=ED.此題得證
(2)AD∥BC還可以得到△AEF∽△CBF,又AE=ED,通過等量代換即可得到GE、GB、EF、FB之間的關系.
乙:(1)圖象經(jīng)過A(-1,-4),可用待定系數(shù)法求解.
(2)考慮經(jīng)過原點并且在同一直線上,也就成了線段MN.
解答:甲題:
(1)證明:∵AD∥BC
∴△GED∽△GBC(2分)
GE
GB
=
ED
BC
(3分)
又∵點E是邊AD的中點
∴AE=ED
GE
GB
=
AE
BC
(4分)

(2)解:∵AD∥BC
∴△AEF∽△CBF
AE
BC
=
EF
BF
(5分)
由(1)知
GE
GB
=
AE
BC

EF
BF
=
GE
GB
(6分)
設EF=x,則GB=5+x,
則有
x
3
=
2
5+x
(8分)
即x2+5x-6=0
解得:x=1或x=-6,
經(jīng)檢驗,x=1或x=-6都是原方程的根,但x=-6不合題意,舍去.
故EF的長為1.(9分)

乙題:
解:(1)因為反比例函數(shù)的圖象經(jīng)過點(-1,-4)
-4=
k
-1
(2分)
∴k=4(3分)
所以反比例函數(shù)的解析式為y=
4
x
.(4分)

(2)當M,N為-,三象限角平分線與反比例函數(shù)圖象的交點時,線段MN最短.(5分)
將y=x代入y=
4
x
,
解得
x=2
y=2
x=-2
y=-2
,
即M(2,2),N(-2,-2).(6分)
∴OM=2
2
.(7分)
則MN=4
2
.(8分)
又∵M,N為反比例函數(shù)圖象上的任意兩點,
由圖象特點知,線段MN無最大值,即MN≥4
2
.(9分)
點評:題甲:主要考查相似三角形對應邊成比例,點E是邊AD的中點得AE=ED是突破口
題乙:主要考查待定系數(shù)法求反比例函數(shù)解析式,猜想時首選經(jīng)過原點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

同步練習冊答案