在平面直角坐標(biāo)系中,拋物線數(shù)學(xué)公式與x軸交于A、B兩點(diǎn),點(diǎn)Q在y軸上,點(diǎn)P在拋物線上,且以點(diǎn)Q、P、A、B為頂點(diǎn)的四邊形是平行四邊形,則滿足條件的點(diǎn)P有


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
C
分析:要分類討論AB是邊還是對(duì)角線兩種情況,AB為邊時(shí),只要PQ∥AB且PQ=AB=4即可,進(jìn)而求出P點(diǎn)坐標(biāo),當(dāng)AB為對(duì)角線時(shí),只要線段PQ與線段AB互相平分即可,進(jìn)而求出P點(diǎn)坐標(biāo).
解答:解:∵拋物線與x軸交于A、B兩點(diǎn),
∴A(-1,0)、B(3,0);
①當(dāng)AB為邊時(shí),只要PQ∥AB且PQ=AB=4即可.
又知點(diǎn)Q在y軸上,
∴點(diǎn)P的橫坐標(biāo)為4或-4,這時(shí)符合條件的點(diǎn)P有兩個(gè),分別記為P1,P2
而當(dāng)x=4時(shí),y=;
當(dāng)x=-4時(shí),y=7,
此時(shí)P1(4,)、P2(-4,7).
②當(dāng)AB為對(duì)角線時(shí),只要線段PQ與線段AB互相平分即可,
又知點(diǎn)Q在y軸上,Q點(diǎn)橫坐標(biāo)為0,且線段AB中點(diǎn)的橫坐標(biāo)為1,
∴點(diǎn)P的橫坐標(biāo)為2,這時(shí)符合條件的P只有一個(gè)記為P3
而且當(dāng)x=2時(shí)y=-1,此時(shí)P3(2,-1),
綜上,滿足條件的P為P1(4,)、P2(-4,7)、P3(2,-1).
故選C.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合題,涉及到二次函數(shù)解析式的確定,分類討論的思想,此題不是很難,但是做題時(shí)要考慮周全.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡(jiǎn)捷的解題策略?請(qǐng)說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案