某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售一個月能售出500千克;銷售單價每漲1元,月銷售量就減少10千克,商店想在月銷售成本不超過1萬元的情況下,使得月銷售利潤達到8000元,銷售單價應(yīng)定為多少?
設(shè)每件需漲價x元,則銷售價為(50+x)元.月銷售利潤為y元.
由利潤=(售價-進價)×銷售量,可得y=(50+x-40)×(500-10x),
令y=8000,解得x1=10,x2=30.
當(dāng)x1=10時,銷售價為60元,月銷售量為400千克,則成本價為40×400=16000(元),超過了10000元,不合題意,舍去;
當(dāng)x2=30時,銷售價為80元,月銷售量為200千克,則成本價為40×200=8000(元),低于10000元,符合題意.
故銷售價為80元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:O為坐標(biāo)原點,∠AOB=30°,∠ABO=90°且A(2,0).求:過A、B、O三點的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線y=ax2+bx+c經(jīng)過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標(biāo);
(2)求拋物線的解析式及頂點F的坐標(biāo);
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標(biāo);
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點A(3,0)為圓心,以5為半徑的圓與x軸相交于點B、C,與y軸相交于點D、E.
(1)若拋物線y=
1
4
x2+bx+c
經(jīng)過C、D兩點,求此拋物線的解析式并判斷點B是否在此拋物線上.
(2)若在(1)中的拋物線的對稱軸有一點P,使得△PBD的周長最短,求點P的坐標(biāo).
(3)若點M為(1)中拋物線上一點,點N為其對稱軸上一點,是否存在以點B、C、M、N為頂點的平行四邊形?若存在,直接寫出點M、N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=
8
2
5
x2+bx+c經(jīng)過點A(
3
2
,0)和點B(1,2
2
),與x軸的另一個交點為C.
(1)求拋物線的函數(shù)表達式;
(2)點D在對稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當(dāng)∠BMF=
1
3
∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點A1、A2、A3、…、An在拋物線y=-x2圖象上,點B0、B1、B2、B3、…、Bn在y軸上(點B0與坐標(biāo)原點O重合),若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形,則A2011B2010的長為( 。
A.2010B.2011C.2010
2
D.2011
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店購買一批單價為20元的日用品,如果以單價30元銷售,那么半月內(nèi)可以售出400件.據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高一元,銷售量相應(yīng)減少20件.如何提高銷售價,才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
x01234
x2+bx+c3-13
(1)求b,c的值;
(2)設(shè)y=x2+bx+c,當(dāng)x取何值時,y隨x的增大而增大?
(3)函數(shù)y=x2+bx+c的圖象經(jīng)過怎樣平移可得到函數(shù)y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=-
1
2
(x-
3
2
)2+
25
8
的圖象在坐標(biāo)原點為O的直角坐標(biāo)系中,
(1)設(shè)這個二次函數(shù)的圖象與x軸的交點是A、B(B在點A右邊),與y軸的交點是C,求A、B、C的坐標(biāo);
(2)求證:△OAC△OCB.

查看答案和解析>>

同步練習(xí)冊答案