【題目】小剛準(zhǔn)備用自己節(jié)省的零花錢購買一臺(tái)MP5來學(xué)習(xí)英語,他已存有50元,并計(jì)劃從本月起每月節(jié)省30元,直到他至少有280元.設(shè)x個(gè)月后小剛至少有280元,則可列計(jì)算月數(shù)的不等式為( )
A.30x+50>280
B.30x-50≥280
C.30x-50≤280
D.30x+50≥280
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),△ADE與△AD′E關(guān)于直線AE對(duì)稱,當(dāng)△AD′B為直角三角形時(shí),DE的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.平行四邊形的對(duì)角線相等
B.一組對(duì)邊平行,一組對(duì)邊相等的四邊形是平行四邊形
C.對(duì)角線互相平分的四邊形是平行四邊形
D.有兩對(duì)鄰角互補(bǔ)的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. a4÷a3=aB. (a2)4=a6C. 2a2﹣a2=1D. 3a32a2=6a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,∠BAD=60°,∠BCD=120°,延長(zhǎng)BC,使CE=CD,連接DE,求證:BC+DC=AC.
思路點(diǎn)撥:
(1)由已知條件AB=AD,∠BAD=60°,可知:△ABD是 三角形;
(2)同理由已知條件∠BCD=120°得到∠DCE= ,且CE=CD,可知 ;
(3)要證BC+DC=AC,可將問題轉(zhuǎn)化為兩條線段相等,即 = ;請(qǐng)你先完成思路點(diǎn)撥,再進(jìn)行證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B、C、D四位員工做一項(xiàng)工作,每天必須是三位員工同時(shí)做,另一位員工休息,當(dāng)完成這項(xiàng)工作時(shí),D做了8天,比其他任何人都多,B做了5天,比其他任何人都少,那么A做了_____天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中:
(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列去括號(hào)錯(cuò)誤的是
A. a-(b+c)=a-b-c B. a+(b-c)=a+b-c
C. 2(a-b)=2a-b D. -(a-2b)=-a+2b
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com