已知直線y=kx+b經(jīng)過(guò)A(0,2)、B(4,0)兩點(diǎn).
(1)求直線AB的解析式;
(2)將該直線向上平移6個(gè)單位,求平移后的直線與x軸交點(diǎn)的坐標(biāo).
分析:(1)將兩點(diǎn)代入即可求出k和b的值,繼而可得出答案.
(2)根據(jù)上加下減的法則可得出平移后的解析式,令y=0可求出與x軸交點(diǎn)的坐標(biāo).
解答:解:(1)把A(0,2)、B(4,0)代入y=kx+b,
得:
b=2
4k+b=0
解得:
b=2
k=-
1
2
,
y=-
1
2
x+2

(2)將y=-
1
2
x+2
向上平移6個(gè)單位得:y=-
1
2
x+8

當(dāng)y=0時(shí),有-
1
2
x+8=0
,解得:x=16.
所以平移后的直線與x軸交點(diǎn)的坐標(biāo)(16,0).
點(diǎn)評(píng):本題考查了待定系數(shù)法求函數(shù)解析式的知識(shí),難度不大,注意掌握平移的法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知直線y=kx+b經(jīng)過(guò)第一、二、四象限,則直線y=bx+k經(jīng)過(guò)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•義烏市)如圖1,已知直線y=kx與拋物線y=-
4
27
x2
+
22
3
交于點(diǎn)A(3,6).
(1)求直線y=kx的解析式和線段OA的長(zhǎng)度;
(2)點(diǎn)P為拋物線第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
(3)如圖2,若點(diǎn)B為拋物線上對(duì)稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+1經(jīng)過(guò)點(diǎn)A(2,5),求不等式kx+1>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+b(k≠0)與直線y=-2x平行,且經(jīng)過(guò)點(diǎn)(1,1),則直線y=kx+b(k≠0)可以看作由直線y=-2x向
平移
3
3
個(gè)單位長(zhǎng)度而得到.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+2-4k(k為實(shí)數(shù)),不論k為何值,直線都經(jīng)過(guò)定點(diǎn)
(4,2)
(4,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案