(2010•江北區(qū)模擬)如圖,直線與x軸、y軸交于A、B兩點,且OA=OB=1,點P是反比例函數(shù)圖象在第一象限的分支上的任意一點,P點坐標為(a,b),由點P分別向x軸,y軸作垂線PM、PN,垂足分別為M、N;PM、PN分別與直線交于點E,點F.
(1)設交點E、F都在線段AB上,分別求出點E、點F的坐標;(用含a的代數(shù)式表示)
(2)△AOF與△BOE是否一定相似?如果一定相似,請予以證明;如果不一定相似或一定不相似,請簡短說明理由;
(3)當點P在曲線上移動時,△OEF隨之變動,指出在△OEF的三個內(nèi)角中,大小始終保持不變的那個角和它的大小,并證明你的結論;
(4)在雙曲線上是否存在點P,使點P到直線AB的距離最短的點,若存在,請求出點P的坐標及最短距離;若不存在,說明理由

【答案】分析:(1)設直線EF的解析式為y=kx+b,把A(1,0),B(0,1)代入y=kx+b,運用待定系數(shù)法求出直線EF的解析式,由點P(a,b)是反比例函數(shù)圖象上的點,得出,又點E的橫坐標為a,點F的縱坐標為b即,分別把x=a,y=代入直線EF的解析式,即可求出對應的值,從而得出結果;
(2)在△BOE與△AOF中,由于∠OBA=∠OAB=45°,根據(jù)相似三角形的判定,可分別計算BE:OB與OA:AF的值,如果它們相等,那么△AOF∽△BEO,否則,就不相似;
(3)根據(jù)相似三角形的對應角相等及三角形的一個外角等于與它不相鄰的兩個外角的和得出∠FOE=∠EAO=45°;
(4)假設在雙曲線上存在點P,使點P到直線AB的距離最短.那么平行于AB的直線y=-x+m應與雙曲線相切,即方程有兩個相等的實數(shù)根,根據(jù)判別式△=0求出m的值,從而確定點P的坐標,進而得到點P到直線AB的最短距離.
解答:解:(1)設直線EF的解析式為y=kx+b,
由題知A(1,0),B(0,1),
把A(1,0),B(0,1)代入y=kx+b,
得k+b=0,b=1,
解得k=-1,b=1.
∴y=-x+1.
∵點P(a,b)是反比例函數(shù)圖象上的點,

∴E(a,1-a),F(xiàn)

(2)△AOF與△BOE一定相似.
理由如下:
∵OA=OB=1,
,∠OBA=∠OAB=45°,
,
,,
=OA•OB=1,

又∵∠OBA=∠OAB=45°,
∴△AOF∽△BEO;

(3)∠FOE=45°,角度始終不變.
理由如下:
∵△AOF∽△BEO,
∴∠FOA=∠OEB,
∴∠FOE+∠EOA=∠EOA+∠EAO,
得∠FOE=∠EAO=45°;

(4)設平行于直線AB的直線解析式為y=-x+m,
解方程,
化簡得2x2-2mx+1=0,
當△=0時,解得(負值舍去).
所以,解得
所以點P的坐標為
∴點P到直線AB的距離最短為
點評:本題主要考查了運用待定系數(shù)法求函數(shù)的解析式,相似三角形的判定及性質(zhì),一次函數(shù)與反比例函數(shù)的關系,通過解方程求交點坐標等知識.綜合性強,有一定難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年浙江省寧波市江北區(qū)中考數(shù)學模擬試卷(解析版) 題型:填空題

(2010•江北區(qū)模擬)如圖,拋物線的對稱軸是直線x=1,且經(jīng)過點P(3,0),拋物線的解析式是   

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(15)(解析版) 題型:填空題

(2010•江北區(qū)模擬)閱讀下列方法:為了找出序列3、8、15、24、35、48、…的規(guī)律,我們有一種“因式分解法”.如下
表:
123456n
3815243548 

因此,我們得到第n項是n(n+2),請你利用上述方法,說出序列:0、5、12、21、32、45、…的第n項是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省寧波市江北區(qū)中考數(shù)學模擬試卷(解析版) 題型:選擇題

(2010•江北區(qū)模擬)如圖四邊形紙片ABCD,其中∠B=120°,∠D=40°,∠DAB=100°.現(xiàn)將其右下角向內(nèi)折出△PC′R,恰使C′P∥AB,RC′∥AD,如圖所示,則∠RC′P的度數(shù)是( )

A.110°
B.95°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省寧波市江北區(qū)中考數(shù)學模擬試卷(解析版) 題型:選擇題

(2010•江北區(qū)模擬)如圖,在坡比為1:2的斜坡上有兩棵樹AC、BD,已知兩樹間的坡面距離AB=米,那么兩樹間的水平距離為( )米.

A.
B.
C.
D.4

查看答案和解析>>

同步練習冊答案