如圖1,在平面直角坐標(biāo)系中,矩形OABC的頂點O在坐標(biāo)原點,頂點A、C分別在x軸、y軸的正半軸上,且OA=2,OC=1,矩形對角線AC、OB相交于E,過點E的直線與邊OA、BC分別相交于點G、H.
(1)①直接寫出點E的坐標(biāo): (1,) .
②求證:AG=CH.
(2)如圖2,以O為圓心,OC為半徑的圓弧交OA與D,若直線GH與弧CD所在的圓相切于矩形內(nèi)一點F,求直線GH的函數(shù)關(guān)系式.
(3)在(2)的結(jié)論下,梯形ABHG的內(nèi)部有一點P,當(dāng)⊙P與HG、GA、AB都相切時,求⊙P的半徑.
考點:
切線的判定與性質(zhì);一次函數(shù)綜合題;全等三角形的判定與性質(zhì);勾股定理;矩形的性質(zhì);相似三角形的判定與性質(zhì)。
專題:
計算題;證明題。
分析:
(1)①根據(jù)矩形的性質(zhì)和邊長即可求出E的坐標(biāo);②推出CE=AE,BC∥OA,推出∠HCE=∠EAG,證出△CHE≌△AGE即可;
(2)連接DE并延長DE交CB于M,求出DD=OC=OA,證△CME≌△ADE,求出CM=AD=1,推出四邊形CMDO是矩形,求出MD切⊙O于D,設(shè)CH=HF=x,推出(1-x)2+()2=(+x)2,求出H、G的坐標(biāo),設(shè)直線GH的解析式是y=kx+b,把G、H的坐標(biāo)代入求出即可;
(3)連接BG,證△OCH≌△BAG,求出∠CHO=∠AGB,證△HOE≌△GBE,求出∠OHE=∠BGE,得出BG平分∠FGA,推出圓心P必在BG上,過P做PN⊥GA,垂足為N,根據(jù)△GPN∽△GBA,得出,設(shè)半徑為r,代入求出即可.
解答:
(1)①解:E的坐標(biāo)是:(1,),
故答案為:(1,);
②證明:∵矩形OABC,
∴CE=AE,BC∥OA,
∴∠HCE=∠EAG,
∵在△CHE和△AGE中
,
∴△CHE≌△AGE,
∴AG=CH.
(2)解:連接DE并延長DE交CB于M,
∵DD=OC=1=OA,
∴D是OA的中點,
∵在△CME和△ADE中
,
∴△CME≌△ADE,
∴CM=AD=2-1=1,
∵BC∥OA,∠COD=90°,
∴四邊形CMDO是矩形,
∴MD⊥OD,MD⊥CB,
∴MD切⊙O于D,
∵得HG切⊙O于F,E(1,),
∴可設(shè)CH=HF=x,FE=ED==ME,
在Rt△MHE中,有MH2+ME2=HE2
即(1-x)2+()2=(+x)2,
解得x=,
∴H(,1),OG=2-=,
又∵G(,0),
設(shè)直線GH的解析式是:y=kx+b,
把G、H的坐標(biāo)代入得:0=b,且1=k+b,
解得:k=-,b=,
∴直線GH的函數(shù)關(guān)系式為y=-.
(3)解:連接BG,
∵在△OCH和△BAG中
,
∴△OCH≌△BAG,
∴∠CHO=∠AGB,
∵∠HCO=90°,
∴HC切⊙O于C,HG切⊙O于F,
∴OH平分∠CHF,
∴∠CHO=∠FHO=∠BGA,
∵△CHE≌△AGE,
∴HE=GE,
在△HOE和△GBE中
,
∴△HOE≌△GBE,
∴∠OHE=∠BGE,[來源:學(xué)科網(wǎng)]
∵∠CHO=∠FHO=∠BGA,
∴∠BGA=∠BGE,
即BG平分∠FGA,
∵⊙P與HG、GA、AB都相切,
∴圓心P必在BG上,
過P做PN⊥GA,垂足為N,
∴△GPN∽△GBA,
∴,
設(shè)半徑為r,
=,
解得:r=,
答:⊙P的半徑是.
點評:
本題綜合考查了矩形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定,切線的性質(zhì)和判定,一次函數(shù)和勾股定理等知識點,本題綜合性比較強(qiáng),難度偏大,但是也是一道比較好的題目.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點.
(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時,s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對稱問題時發(fā)現(xiàn):
如圖1,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.
如圖2,當(dāng)點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.
(1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標(biāo)為(),點的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com