作业宝如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A,B,O三點(diǎn),點(diǎn)C為弧AB上的一點(diǎn)(不與A,B兩點(diǎn)重合),則cosC的值是________.


分析:連結(jié)AB,如圖,根據(jù)點(diǎn)的坐標(biāo)得到OA=3,OB=4,再利用勾股定理計(jì)算出AB=5,根據(jù)余弦的定義得到cosB==,然后根據(jù)圓周角定理得∠C=∠B,所以cosC=
解答:解:連結(jié)AB,如圖,
∵點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),
∴OA=3,OB=4,
∴AB==5,
∴cosB==,
∵∠C=∠B,
∴cosC=
故答案為
點(diǎn)評(píng):本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.也考查了銳角三角函數(shù)的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為
ABO
上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為( 。
A、
3
4
B、
3
5
C、
4
3
D、
4
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011山東濟(jì)南,12,3分)如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為(  )

 

A.            B.       C.                    D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011山東濟(jì)南,12,3分)如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為(  )

 

A.            B.       C.                    D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年遼寧省盤錦市中考模擬(二)數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為優(yōu)弧ABO上的一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為

A.              B.             C.            D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(云南曲靖卷)數(shù)學(xué) 題型:選擇題

(2011山東濟(jì)南,12,3分)如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為( 。

 

A.             B.        C.                    D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案