已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求此拋物線的解析式;
(2)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說明理由。
(1)所求拋物線的表達(dá)式為: (2)
(3)為等腰三角形,理由點(diǎn)E和點(diǎn)B關(guān)于直線OC軸對(duì)稱,所以CE=CB
解析試題分析:(1)解方程x2-10x+16=0得x1=2,x2=8,
由題意得:A(-6,0),C(0,8),B(2,0)
∵點(diǎn)C(0,8)在拋物線y=ax2+bx+c的圖象上,∴c=8,
將A(-6,0)、B(2,0)代入表達(dá)式,得,
解得
∴所求拋物線的表達(dá)式為:
(2)由 A(-6,0),C(0,8),B(2,0)得:AB=8,OC=8,OA=6,
∵AE="m," ∴BE="8-m."
在Rt △AOC中,由勾股定理得:
設(shè)中BE邊上的高為h.
∵EF//AC
∽
,即,
(3) 由(2)知,S存在最大值,最大值為8平方單位,
此時(shí),m=4,所以點(diǎn)E坐標(biāo)為(-2,0),
點(diǎn)E和點(diǎn)B關(guān)于直線OC軸對(duì)稱;為等腰三角形。
考點(diǎn):拋物線,等腰三角形,相似三角形
點(diǎn)評(píng):本題考查拋物線,等腰三角形,要求考生會(huì)用待定系數(shù)法求函數(shù)的解析式,掌握拋物線的性質(zhì),熟悉等腰三角形的判定方法,會(huì)判定兩個(gè)三角形相似
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=ax2+bx+c(a>0)經(jīng)過點(diǎn)B(12,0)和C(0,-6),對(duì)稱軸為x=2.
(1)求該拋物線的解析式.
(2)點(diǎn)D在線段AB上且AD=AC,若動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若存在,請(qǐng)說明理由.
(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請(qǐng)求出所有點(diǎn)M的坐
標(biāo);若存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆山東鄒城北宿中學(xué)九年級(jí)3月月考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)若點(diǎn)D(m,m+1)在第一象限的拋物線上, 求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,若點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011年浙江省嵊州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)
如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3)。設(shè)拋物線的頂點(diǎn)為D,求解下列問題:
1.(1)求拋物線的解析式和D點(diǎn)的坐標(biāo);
2.(2)過點(diǎn)D作DF∥軸,交直線BC于點(diǎn)F,求線段DF的長(zhǎng),并求△BCD的面積;
3.(3)能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫出Q點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com