△ABC中,∠ABC=30°,邊AB=10,邊AC可以從4,5,7,9,11取一值.滿足這些條件的互不全等三角形的個(gè)數(shù)是( 。

A.6                B.7                C.5               D.4

 

A

解析:解:當(dāng)AC=5時(shí),AC=1 2 AB,此時(shí)∠ACB為直角,有1個(gè)三角形為直角三角形;

當(dāng)AC=7時(shí),∠ACB為鈍角或銳角時(shí),各有1個(gè),共2個(gè);

當(dāng)AC=9時(shí),∠ACB為鈍角或銳角時(shí),各有1個(gè),共2個(gè);

當(dāng)AC=11時(shí),∠ACB為銳角時(shí),有1個(gè),此時(shí)不存在∠ACB為鈍角的三角形;

綜上所述,共有6個(gè)滿足條件的互不全等三角形.

故選A.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底邊DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延長HF交AB于G,求△AHG的面積.
(2)操作:固定△ABC,將直角梯形DEFH以每秒1個(gè)單位的速度沿CB方向向右移動,直到點(diǎn)D與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動的時(shí)間為t秒,運(yùn)動后的直角梯形為DEFH′(如圖).
探究1:在運(yùn)動中,四邊形CDH′H能否為正方形?若能,請求出此時(shí)t的值;若不能,請說明理由.
探究2:在運(yùn)動過程中,△ABC與直角梯形DEFH′重疊部分的面積為y,求y與t的函數(shù)關(guān)系.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、問題:已知△ABC中,∠BAC=2∠ACB,點(diǎn)D是△ABC內(nèi)的一點(diǎn),且AD=CD,BD=BA.探究∠DBC與∠ABC度數(shù)的比值.
請你完成下列探究過程:
先將圖形特殊化,得出猜想,再對一般情況進(jìn)行分析并加以證明.
(1)當(dāng)∠BAC=90°時(shí),依問題中的條件補(bǔ)全右圖;
觀察圖形,AB與AC的數(shù)量關(guān)系為
相等
;當(dāng)推出∠DAC=15°時(shí),可進(jìn)一步推出∠DBC的度數(shù)為
15°
;可得到∠DBC與∠ABC度數(shù)的比值為
1:3
;
(2)當(dāng)∠BAC<90°時(shí),請你畫出圖形,研究∠DBC與∠ABC度數(shù)的比值是否與(1)中的結(jié)論相同,寫出你的猜想并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底邊DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延長HF交AB于G,求△AHG的面積.
(2)操作:固定△ABC,將直角梯形DEFH以每秒1個(gè)單位的速度沿CB方向向右移動,直到點(diǎn)D與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動的時(shí)間為t秒,運(yùn)動后的直角梯形為DEFH′(如圖).
探究1:在運(yùn)動中,四邊形CDH′H能否為正方形?若能,請求出此時(shí)t的值;若不能,請說明理由.
探究2:在運(yùn)動過程中,△ABC與直角梯形DEFH′重疊部分的面積為y,求y與t的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇期中題 題型:解答題

如圖,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底邊DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延長HF交AB于G,求△AHG的面積.
(2)操作:固定△ABC,將直角梯形DEFH以每秒1個(gè)單位的速度沿CB方向向右移動,直到點(diǎn)D與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動的時(shí)間為t秒,運(yùn)動后的直角梯形為DEFH′(如圖).
探究1:在運(yùn)動中,四邊形CDH?H能否為正方形?若能,請求出此時(shí)t的值;若不能,請說明理由.
探究2:在運(yùn)動過程中,△ABC與直角梯形DEFH?重疊部分的面積為y,求y與t的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖南省中考真題 題型:解答題

如圖1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底邊DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3。
(1)延長HF交AB于G,求△AHG的面積;
(2)操作:固定△ABC,將直角梯形DEFH以每秒1個(gè)單位的速度沿CB方向向右移動,直到點(diǎn)D與點(diǎn)B 重合時(shí)停止,設(shè)運(yùn)動的時(shí)間為t秒,運(yùn)動后的直角梯形為DEFH′(如圖2)。
探究1:在運(yùn)動中,四邊形CDH′H能否為正方形?若能,請求出此時(shí)t的值;若不能,請說明理由;
探究2:在運(yùn)動過程中,△ABC與直角梯形DEFH′重疊部分的面積為y,求y與t的函數(shù)關(guān)系。

查看答案和解析>>

同步練習(xí)冊答案