(2006•長春)下列運算正確的是( )
A.a(chǎn)2•a3=a6
B.(a23=a5
C.2a+3a=5a
D.a(chǎn)3-a=a2
【答案】分析:根據(jù)同底數(shù)冪的乘法、冪的乘方及合并同類項法則進(jìn)行計算.
解答:解:A、應(yīng)為a2•a3=a2+3=a5,故本選項錯誤;
B、應(yīng)為(a23=a6,故本選項錯誤;
C、2a+3a=5a,正確;
D、a3與a不是同類項,不能合并,故本選項錯誤.
故選C.
點評:本題用到的知識點為:
①同底數(shù)冪乘法法則:底數(shù)不變,指數(shù)相加.②冪的乘方法則為:底數(shù)不變,指數(shù)相乘.
合并同類項,只需把系數(shù)相加減,字母和字母的指數(shù)不變,不是同類項的一定不能合并.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•長春)如圖,在平面直角坐標(biāo)系中,兩個函數(shù)y=x,y=-x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點A的坐標(biāo).
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前10日信息題復(fù)習(xí)題精選(6)(解析版) 題型:解答題

(2006•長春)如圖,在平面直角坐標(biāo)系中,兩個函數(shù)y=x,y=-x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點A的坐標(biāo).
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市十九中中考數(shù)學(xué)模擬考試四校聯(lián)考試卷(解析版) 題型:解答題

(2006•長春)如圖,在平面直角坐標(biāo)系中,兩個函數(shù)y=x,y=-x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點A的坐標(biāo).
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年吉林省長春市中考數(shù)學(xué)試卷(試考)(解析版) 題型:解答題

(2006•長春)如圖,在平面直角坐標(biāo)系中,兩個函數(shù)y=x,y=-x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點A的坐標(biāo).
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是______

查看答案和解析>>

同步練習(xí)冊答案