如圖,直線y=-x+1與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,P(a,b)為雙曲線y=
1
2x
(x>0)
上的一點(diǎn),PM⊥x軸于M,交AB于E,PN⊥y軸于N,交AB于F.
(1)當(dāng)點(diǎn)P的坐標(biāo)為(
3
4
,
2
3
)時(shí),求E、F兩點(diǎn)的坐標(biāo)及△EOF的面積;
(2)用含a,b的代數(shù)式表示E、F兩點(diǎn)的坐標(biāo)及△EOF的面積;
(3)求BE•AF的值.
(1)∵點(diǎn)P的坐標(biāo)為(
3
4
2
3

而PM⊥x軸,PN⊥y軸,
∴E點(diǎn)的橫坐標(biāo)為
3
4
,F(xiàn)點(diǎn)的縱坐標(biāo)為
2
3

∵點(diǎn)E、F在直線y=-x+1上,
當(dāng)x=
3
4
時(shí),y=-
3
4
+1=
1
4
,
當(dāng)y=
2
3
時(shí),
2
3
=-x+1,則x=
1
3
,
∴E、F兩點(diǎn)的坐標(biāo)分別為(
3
4
,
1
4
)、(
1
3
,
2
3
);
∵A點(diǎn)坐標(biāo)為(1,0),B點(diǎn)坐標(biāo)為(0,1),
∴S△OAB=
1
2
×1×1=
1
2
,
∴S△EOF=S△OAB-S△OBF-S△OAE
=
1
2
-
1
2
×1×
1
3
-
1
2
×1×
1
4
=
5
24


(2)∵點(diǎn)P的坐標(biāo)為(a,b),0<a≤1,且b=
1
2a
,
而PM⊥x軸,PN⊥y軸,
∴E點(diǎn)的橫坐標(biāo)為a,F(xiàn)點(diǎn)的縱坐標(biāo)為b,
∵點(diǎn)E、F在直線y=-x+1上,
∴當(dāng)x=a時(shí),y=-a+1,
當(dāng)y=b時(shí),b=-x+1,則x=-b+1,
∴E、F兩點(diǎn)的坐標(biāo)分別為(a,-a+1)、(-b+1,b);
S△EOF=S△OAB-S△OBF-S△OAE
=
1
2
-
1
2
×1×(-b+1)-
1
2
×1×(-a+1)=
1
2
(a+b-1);

(3)作EG⊥y軸于G,F(xiàn)H⊥x軸于H點(diǎn),如圖,
∵OA=OB=1,
∴△OAB為等腰直角三角形,
∴△GEB、△FHA都為等腰直角三角形,
∴BE=
2
GE,AF=
2
FH,
而E、F兩點(diǎn)的坐標(biāo)分別為(a,-a+1)、(-b+1,b),ab=1,
∴BE=
2
a,AF=
2
b,
∴BE•AF=2ab=2×
1
2
=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)直線l2:y=-2x+8與x軸相交于點(diǎn)N,與直線l1相交于點(diǎn)E(1,a),雙曲線y=
k
x
(x>0)經(jīng)過點(diǎn)E,且與直線l1相交于另一點(diǎn)F(9,
2
3
).
(1)求雙曲線解析式及直線l1的解析式;
(2)點(diǎn)P在直線l1上,過點(diǎn)F向y軸作垂線,垂足為點(diǎn)B,交直線l2于點(diǎn)H,過點(diǎn)P向x軸作垂線,垂足為點(diǎn)D,與FB交于點(diǎn)C.
①請直接寫出當(dāng)線段PH與線段PN的差最大時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)以P、B、C三點(diǎn)為頂點(diǎn)的三角形與△AMO相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知反比例函數(shù)y=
k1
2x
的圖象與一次函數(shù)y=k2x+b的圖象交于A,B兩點(diǎn),A(1,n),B(-
1
2
,-2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,請你直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一輛汽車勻速通過某段公路,所需時(shí)間t(h)與行駛速度v(km/h)滿足函數(shù)關(guān)系:t=
k
v
,其圖象為如圖所示的一段曲線且端點(diǎn)為A(40,1)和B(m,0.5).
(1)求k和m的值;
(2)若行駛速度不得超過60km/h,則汽車通過該路段最少需要多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中有一正方形AOBC,反比例函數(shù)y=
k
x
經(jīng)過正方形AOBC對角線的支點(diǎn),半徑為(4-2
2
)的圓內(nèi)切于△ABC,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,P是雙曲線y=
4
x
(x>0)的一個(gè)分支上的一點(diǎn),以點(diǎn)P為圓心,1個(gè)單位長度為半徑作⊙P,當(dāng)⊙P與直線y=3相切時(shí),點(diǎn)P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:等腰△OAB在直角坐標(biāo)系中的位置如圖,點(diǎn)A坐標(biāo)為(-3
3
,3),點(diǎn)B坐標(biāo)為(-6,0).
(1)若將△OAB沿x軸向右平移a個(gè)單位,此時(shí)點(diǎn)A恰好落在反比例函數(shù)y=
6
3
x
的圖象上,求a的值;
(2)若△OAB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)α度(0<α<360).
①當(dāng)α=30°時(shí),點(diǎn)B恰好落在反比例函數(shù)y=
k
x
的圖象上,求k的值;
②問點(diǎn)A、B能否同時(shí)落在①中的反比例函數(shù)的圖象上?若能,直接寫出α的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△P1OA1、△P2A1A2是等腰直角三角形,點(diǎn)P1、P2在函數(shù)y=
4
x
(x>0)
的圖象上,斜邊OA1、A1A2都在x軸上,則點(diǎn)A2的坐標(biāo)是( 。
A.(2
2
-2
,0)
B.(2
2
+2
,0)
C.(4
2
,0)
D.(2
2
,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

你吃過拉面嗎?實(shí)際上在做拉面的過程中就滲透著數(shù)學(xué)知識:一定體積的面團(tuán)做成拉面,面條的總長度y(單位:m)是面條的粗細(xì)(橫截面積)x(單位:mm2)的反比例函數(shù),其圖象如圖所示.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)若當(dāng)面條的粗細(xì)應(yīng)不小于1.6mm2,面條的總長度最長是多少?
(3)若面條的長度為50m,那么面條的粗細(xì)程度為多少mm2

查看答案和解析>>

同步練習(xí)冊答案