【題目】如圖,P為⊙O外一點,PA,PB是⊙O的切線,A,B為切點,PA=,∠P=60°,則圖中陰影部分的面積為

【答案】
【解析】解:連結(jié)AO,連結(jié)PO交圓于C.
∵PA,PB是⊙O的切線,A,B為切點,PA=,∠P=60°,
∴∠OAP=90°,OA=1,
∴S陰影=2×(SPAO﹣S扇形AOC
=2×(×1×
=π.
所以答案是:π.

【考點精析】關(guān)于本題考查的切線的性質(zhì)定理和扇形面積計算公式,需要了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在平行四邊形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.

(1)求證:△AEH≌△CGF
(2)求證:四邊形EFGH是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織了一批學生隨機對部分市民就是否吸煙以及吸煙和非吸煙人群對他人在公共場所吸煙的態(tài)度(分三類:A表示主動制止;B表示反感但不制止,C表示無所謂)進行了問卷調(diào)查,根據(jù)調(diào)查結(jié)果分別繪制了如下兩個統(tǒng)計圖.請根據(jù)圖中提供的信息解答下列問題:

(1)圖1中,“吸煙”類人數(shù)所占扇形的圓心角的度數(shù)是多少?
(2)這次被調(diào)查的市民有多少人?
(3)補全條形統(tǒng)計圖;
(4)若該市共有市民760萬人,求該市大約有多少人吸煙?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:
①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣
其中正確結(jié)論的個數(shù)是( 。

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;
②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D.

(1)求證:BE=CF;
(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃組織師生共300人參加一次大型公益活動,如果租用6輛大客車和5輛小客車恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個.
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動的人數(shù)增加了30人,學校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為將所有參加活動的師生裝載完成,求租用小客車數(shù)量的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA=AB,∠OAB=90°,反比例函數(shù)y= (x>0)的圖象經(jīng)過A,B兩點.若點A的坐標為(n,1),則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā),勻速運動,快車離乙地的路程y1(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中AB所示;慢車離乙地的路程y2(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中線段OC所示,根據(jù)圖象進行以下研究.

解讀信息:
(1)甲,乙兩地之間的距離為 km;
(2)線段AB的解析式為;線段OC的解析式為
(3)設快,慢車之間的距離為y(km),求y與慢車行駛時間x(h)的函數(shù)關(guān)系式,并畫出函數(shù)圖象.

查看答案和解析>>

同步練習冊答案