【答案】
分析:(1)把原點(diǎn)及E的坐標(biāo)分別代入函數(shù)關(guān)系式即可求出未知數(shù)的值,從而求出函數(shù)的解析式.
(2)
①根據(jù)二次函數(shù)解析式,求出與x軸0的交點(diǎn)坐標(biāo)及拋物線對(duì)稱(chēng)軸,根據(jù)拋物線和矩形的對(duì)稱(chēng)性求出B點(diǎn)坐標(biāo),因?yàn)锳B∥y軸,所以可知A、B橫坐標(biāo)相同,將B點(diǎn)橫坐標(biāo)代入解析式可以求出A點(diǎn)縱坐標(biāo),A、B兩點(diǎn)縱標(biāo)之差的絕對(duì)值即為AB的長(zhǎng),易求得矩形ABCD的周長(zhǎng);
②因?yàn)锳B∥y軸,所以可知A、B橫坐標(biāo)相同,設(shè)B點(diǎn)橫坐標(biāo)為x,代入解析式可以求出A點(diǎn)縱坐標(biāo)表達(dá)式,再根據(jù)拋物線和矩形的對(duì)稱(chēng)性,求出BC的長(zhǎng)度表達(dá)式,然后將周長(zhǎng)最值問(wèn)題轉(zhuǎn)化為關(guān)于x的二次函數(shù)的最值問(wèn)題解答;
③分點(diǎn)P在AB的左側(cè)和點(diǎn)P在點(diǎn)B的右側(cè)兩種情況解答.先假設(shè)該圖形存在,根據(jù)菱形的性質(zhì)和圖形上點(diǎn)的坐標(biāo)特點(diǎn)求出滿(mǎn)足條件的P、Q兩點(diǎn).
解答:解:
(1)由已知條件,得:
解得:
∴所求的函數(shù)關(guān)系式為y=x
2-3x(2分)
(2)①由y=x
2-3x,令y=0,
得x
2-3x=0,
解得x
1=0,x
2=3;
∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0)(3分)
∴它的頂點(diǎn)為(
,-
),對(duì)稱(chēng)軸為直線x=
∵BC=1,由拋物線和矩形的對(duì)稱(chēng)性易知OB=
(3-1)=1
∴B(1,0)(4分)
∴點(diǎn)A的橫坐標(biāo)x=1,又點(diǎn)A在拋物線y=x
2-3x上,
∴點(diǎn)A的縱坐標(biāo)y=1
2-3×1=-2.
∴AB=|y|=2
∴矩形ABCD的周長(zhǎng)為:2(AB+BC)=6(5分)
②∵點(diǎn)A在拋物線y=x
2-3x上,可以設(shè)A點(diǎn)的坐標(biāo)為(x,x
2-3x),
∴B點(diǎn)的坐標(biāo)為(x,0).(0<x<
)
∴BC=3-2x,A在x軸的下方,
∴x
2-3x<0
∴AB=|x
2-3x|=3x-x
2∴矩形ABCD的周長(zhǎng)P=2[(3x-x
2)+(3-2x)]=-2(x-
)
2+
(6分)
∵a=-2<0,
∴當(dāng)x=
時(shí),矩形ABCD的周長(zhǎng)P最大值是
,(7分)
此時(shí)點(diǎn)A的坐標(biāo)是(
,
)(8分)
③當(dāng)B(
,0)時(shí),A(
,
),D(
,
),
且AD∥PQ.要使四邊形PQDA是菱形,則需PA=PQ=AD=2,
有兩種情況,當(dāng)點(diǎn)P在AB的左側(cè)時(shí),
PB=
=
=
而B(niǎo)(
,0)
∴P(
,0),此時(shí)Q(
,0)(9分)
當(dāng)點(diǎn)P在點(diǎn)B的右側(cè)時(shí),同理可得此時(shí)P(
,0),Q(
,0)(10分)
綜上所述,存在滿(mǎn)足條件的P、Q兩點(diǎn).點(diǎn)P的坐標(biāo)為(
,0)或(
,0).
點(diǎn)評(píng):此題將拋物線和矩形菱形的周長(zhǎng)和面積問(wèn)題相結(jié)合,是一道中考?jí)狠S題.解答時(shí)要根據(jù)圖形上點(diǎn)的坐標(biāo)特點(diǎn)建立相應(yīng)表達(dá)式,特別是(2)充分利用圖形特點(diǎn),轉(zhuǎn)化為關(guān)于二次函數(shù)的最值問(wèn)題解答.