【題目】如圖,將邊長(zhǎng)為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQ與BC交于點(diǎn)G,則△EBG的周長(zhǎng)是cm.

【答案】12
【解析】解:設(shè)AF=x,則DF=6﹣x,由折疊的性質(zhì)可知:EF=DF=6﹣x. 在Rt△AFE,由勾股定理可知:EF2=AF2+AE2 , 即(6﹣x)2=x2+32 ,
解得:x=
∵∠FEG=90°,
∴∠AEF+∠BEG=90°.
又∵∠BEG+∠BGE=90°,
∴∠AEF=∠BGE.
又∵∠EAF=∠EBG,
∴△FAE∽△EBG.
,即
∴BG=4.
在Rt△EBG中,由勾股定理可知:EG= = =5.
所以△EBG的周長(zhǎng)=3+4+5=12cm.
設(shè)AF=x,則DF=6﹣x,由折疊的性質(zhì)可知:EF=DF=6﹣x,在Rt△AFE,由勾股定理可求得:x= ,然后再證明△FAE∽△EBG,從而可求得BG=4,接下來在Rt△EBG中,由勾股定理可知:EG=5,從而可求得△EBG的周長(zhǎng)為12cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧波軌道交通4號(hào)線已開工建設(shè),計(jì)劃2020年通車試運(yùn)營(yíng).為了了解鎮(zhèn)民對(duì)4號(hào)線地鐵票的定價(jià)意向,某鎮(zhèn)某校數(shù)學(xué)興趣小組開展了“你認(rèn)為寧波4號(hào)地鐵起步價(jià)定為多少合適”的問卷調(diào)查,并將調(diào)查結(jié)果整理后制成了如下統(tǒng)計(jì)圖,根據(jù)圖中所給出的信息解答下列問題:

(1)求本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù);
(2)請(qǐng)你把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果在該鎮(zhèn)隨機(jī)咨詢一位居民,那么該居民支持“起步價(jià)為2元或3元”的概率是
(4)假設(shè)該鎮(zhèn)有3萬人,請(qǐng)估計(jì)該鎮(zhèn)支持“起步價(jià)為3元”的居民大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是 .若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線y= (x>0)的交點(diǎn)有(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.0個(gè),或1個(gè),或2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的頂點(diǎn)為P(﹣2,2),與y軸交于點(diǎn)A(0,3),若平移該拋物線使其頂點(diǎn)移動(dòng)到點(diǎn)P1(2,﹣2),那么得到的新拋物線的一般式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對(duì)角線AC、BD相交于點(diǎn)O,將對(duì)角線AC所在的直線繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)后得直線l,直線l與AD、BC兩邊分別相交于點(diǎn)E和點(diǎn)F.

(1)求證:△AOE≌△COF;
(2)當(dāng)α=30°時(shí),求線段EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長(zhǎng);
(Ⅱ)如圖②,若∠CAB=60°,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求值 (a﹣ )( ﹣1)÷ ,其中a,b分別為關(guān)于x的一元二次方程x2 x+1=0的兩個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個(gè)布袋都不透明,甲袋中裝有1個(gè)紅球和1個(gè)白球;乙袋中裝有一個(gè)紅球和2個(gè)白球;丙袋中裝有2個(gè)白球.這些球除顏色外都相同.從這3個(gè)袋中各隨機(jī)地取出1個(gè)球. (Ⅰ)取出的3個(gè)球恰好是2個(gè)紅球和1個(gè)白球的概率是多少?
(Ⅱ)取出的3個(gè)球全是白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)L1:y=ax2-2ax+a+3(a>0)和二次函數(shù)L2:y=-a(x+1)2+1(a>0)圖象的頂點(diǎn)分別為M,N,與y軸分別交于點(diǎn)E,F(xiàn).

(1)函數(shù)y=ax2-2ax+a+3(a>0)的最小值為  , 當(dāng)二次函數(shù)L1 , L2的y值同時(shí)隨著x的增大而減小時(shí),x的取值范圍是
(2)當(dāng)EF=MN時(shí),求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).
(3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程-a(x+1)2+1=0的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案