由下列線段不能構(gòu)成三角形的是(  )
A、1,2,3
B、4,6,8
C、4,5,5
D、9,12,15
考點(diǎn):三角形三邊關(guān)系
專題:
分析:根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對(duì)各選項(xiàng)進(jìn)行進(jìn)行逐一分析即可.
解答:解:根據(jù)三角形的三邊關(guān)系,得
A、1+2=3,不能組成三角形,符合題意;
B、4+6>8,能夠組成三角形,不符合題意;
C、4+5>5,能夠組成三角形,不符合題意;
D、9+12>15,能夠組成三角形,不符合題意.
故選A.
點(diǎn)評(píng):此題主要考查了三角形三邊關(guān)系,判斷能否組成三角形的簡(jiǎn)便方法是看較小的兩個(gè)數(shù)的和是否大于第三個(gè)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列運(yùn)算正確的是( 。
A、a2•a3=a6
B、
a2
=|a|
C、3a+2a=a5
D、(a+b)2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)Q是直線AC上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)Q作QE垂直于x軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖正方形網(wǎng)格中,每個(gè)小方格的邊長(zhǎng)為1,請(qǐng)完成:
(1)從A點(diǎn)出發(fā)畫線段AB、AC、BC,使AB=
5
,AC=2
2
,BC=
17
,且使B、C兩點(diǎn)也在格點(diǎn)上;
(2)請(qǐng)求出圖中你所畫的△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

曉晴在電腦中設(shè)置了一個(gè)有理數(shù)的運(yùn)算程序:輸入數(shù)a,加*鍵,再輸入b,就可以得到運(yùn)算a*b=2a-b.若x*(1*3)=2,則x=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:|-1|-(
2
-2013)0-
9
+(-
1
2
)-1+3tan30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)M(0,2),N(1,3).
(1)求一次函數(shù)的解析式.
(2)求出一次函數(shù)與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中∠A=30°,E是AC邊上的點(diǎn),先將△ABE沿著BE翻折,翻折后△ABE的AB邊交AC于點(diǎn)D,又將△BCD沿著BD翻折,C點(diǎn)恰好落在BE上,此時(shí)∠CDB=82°,則原三角形的∠B=(  )度.
A、78°B、52°
C、68°D、75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
x2
x2-1
÷(
1-2x
x-1
-x+1),其中,x為不等式1+2x>3x-2的正整數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案