【題目】分解因式:x3﹣4x2﹣12x= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2008年爆發(fā)的世界金融危機(jī),是自上世紀(jì)三十年代以來(lái)世界最嚴(yán)重的一場(chǎng)金融危機(jī).受金融危機(jī)的影響,某商品原價(jià)為200元,連續(xù)兩次降價(jià)a%后售價(jià)為148元,下面所列方程正確的是( )
A.200(1+a%)2=148
B.200(1﹣a%)2=148
C.200(1﹣2a%)=148
D.200(1﹣a2%)=148
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠C,點(diǎn)E,F(xiàn)分別在邊AB,BC上,AE=DF=DC.
(1)若∠DFC=70°,則∠C的大小=(度),∠B的大小=(度);
(2)求證:四邊形AEFD是平行四邊形;
(3)若∠FDC=2∠EFB,則四邊形AEFD一定是“菱形、矩形、正方形”中的 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次試驗(yàn)中,測(cè)得兩個(gè)變量m和v之間的4組對(duì)應(yīng)數(shù)據(jù)如下表:
m | 1 | 2 | 3 | 4 |
v | 0.01 | 2.9 | 8.03 | 15.1 |
則m與v之間的關(guān)系最接近于下列各關(guān)系式中的( )
A. v=2m-1B. v=m2-1C. v=3m-3D. v=m+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將紙片沿中位線折疊,使點(diǎn)的對(duì)稱點(diǎn)落在邊上,再將紙片分別沿等腰和等腰的底邊上的高線,折疊,折疊后的三個(gè)三角形拼合形成一個(gè)矩形,類似地,對(duì)多邊形進(jìn)行折疊,若翻折后的圖形恰能拼成一個(gè)無(wú)縫隙、無(wú)重疊的矩形,這樣的矩形稱為疊合矩形.
(1)將紙片按圖2的方式折疊成一個(gè)疊合矩形,則操作形成的折痕分別是線段_____,_____;______.
(2)紙片還可以按圖3的方式折疊成一個(gè)疊合矩形,若,,求的長(zhǎng).
(3)如圖4,四邊形紙片滿足.小明把該紙片折疊,得到疊合正方形.請(qǐng)你幫助畫(huà)出疊合正方形的示意圖,并求出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+m分別交x軸,y軸于A,B兩點(diǎn),已知點(diǎn)C(2,0).
(1)當(dāng)直線AB經(jīng)過(guò)點(diǎn)C時(shí),點(diǎn)O到直線AB的距離是 ;
(2)設(shè)點(diǎn)P為線段OB的中點(diǎn),連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某小區(qū)的一個(gè)健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B分別是x軸上位于原點(diǎn)左右兩側(cè)的兩點(diǎn),點(diǎn)P(a,4)在第一象限內(nèi),一過(guò)原點(diǎn)的直線y=2x與直線BD、直線AC同時(shí)過(guò)點(diǎn)P,直線BD交y軸于點(diǎn)D,且線段AO=2.
(1)求△AOP的面積;
(2)若S△BOP=3S△AOP , 求直線BD的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com