【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結果保留根號).
【答案】(1)兩建筑物底部之間水平距離BD的長度為60米;
(2)建筑物CD的高度為(60﹣20)米.
【解析】
試題(1)由題意得:BD∥AE,從而得到∠BAD=∠ADB=45°,再由BD=AB=60,求得兩建筑物底部之間水平距離BD的長度為60米;
(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,根據(jù)AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的長.
試題解析:(1)根據(jù)題意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=60,
∴兩建筑物底部之間水平距離BD的長度為60米;
(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,
∴AF=BD=DF=60,
在Rt△AFC中,∠FAC=30°,
∴CF=AFtan∠FAC=60×=20,
又∵FD=60,
∴CD=60﹣20,
∴建筑物CD的高度為(60﹣20)米.
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù)y= +(1-2a)x(a>0),下列說法錯誤的是( 。
A. 當時,該二次函數(shù)圖象的對稱軸為y軸
B. 當a>時,該二次函數(shù)圖象的對稱軸在y軸的右側
C. 該二次函數(shù)的圖象的對稱軸可為x=1
D. 當x>2時,y的值隨x的值增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知內(nèi)接于,是直徑,點在上,,過點作,垂足為,連接交邊于點.
(1)求證:;
(2)求證:;
(3)連接,設的面積為,,求四邊形的面積(用含有的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點E,∠CAF=2∠B.
(1)求證:AE=AC;
(2)若⊙O的半徑為4,E是OB的中點,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師隨機抽查了本學期學生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.
(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);
(2)在所抽查的學生中隨機選一人談讀書感想,求選中讀書超過5冊的學生的概率;
(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】尺規(guī)作圖:過直線外一點作已知直線的垂線,已知:如圖(1),直線及外一點,求作的垂線,使它經(jīng)過點,小紅的做法如下:
①在直線上任取一點B,連接
②以為圓心,長為半徑作弧,交直線于點;
③分別以為圓心, 長為半徑作弧,兩弧相交于點;
④作直線,直線即為所求如圖(2),小紅的做題依據(jù)是( )
A.四條邊都相等的四邊形是菱形;菱形的對角線互相垂直
B.直徑所對的圓周角是直角
C.直線外一點到這條直線上垂線段最短
D.同圓或等圓中半徑相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為鼓勵市民節(jié)約用氣,對居民管道天然氣實行兩檔階梯式收費,年用天然氣量310立方米及以下為第一檔;年用天然氣量超出310立方米為第二檔,某戶應交天然氣費(元)與年用天然氣量(立方米)的關系如圖所示,觀察圖像并回答問題:
(1)求與之間的函數(shù)解析式并寫出自變量的取值范圍;
(2)嘉琪家2018年天然氣費為1029元,求嘉琪家2018年使用天然氣量是否超出310立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解中學生獲取信息的主要渠道,設置“A:報紙,B:電視,C:網(wǎng)絡,D:身邊的人,E:其他”五個選項(五項中必選且只能選一項)的調查問卷,先隨機抽取50名中學生進行該問卷調查,根據(jù)調查的結果繪制條形圖如圖,該調查的方式和圖中a的值分別是( )
A. 抽樣調查,24 B. 普查,24 C. 抽樣調查,26 D. 普查,26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點E是線段BC延長線上一點,ED⊥AB,垂足為D,ED交線段AC于點F,點O在線段EF上,⊙O經(jīng)過C、E兩點,交ED于點G.
(1)求證:AC是⊙O的切線;
(2)若∠E=30°,AD=1,BD=5,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com