用配方法解方程3x2+6x-5=0時(shí),原方程應(yīng)變形為( )
A.(3x+1)2=4
B.3(x+1)2=8
C.(3x-1)2=4
D.3(x-1)2=5
【答案】分析:先把二次項(xiàng)系數(shù)化為1和常數(shù)項(xiàng)移到方程右邊得到x2+2x=,再把方程兩邊加上1得到x2+2x+1=+1,即(x+1)2=
解答:解:∵x2+2x=,
∴x2+2x+1=+1,
∴(x+1)2=,即3(x+1)2=8.
故選B.
點(diǎn)評(píng):本題考查了解一元二次方程-配方法:先把方程二次項(xiàng)系數(shù)化為1,再把常數(shù)項(xiàng)移到方程右邊,然后把方程兩邊加上一次項(xiàng)系數(shù)的一半得平方,這樣方程左邊可寫(xiě)成完全平方式,再利用直接開(kāi)平方法解方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程3x2-6x+1=0,則方程可變形為( 。
A、(x-3)2=
1
3
B、3(x-1)2=
1
3
C、(3x-1)2=1
D、(x-1)2=
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:
(1)x2-4x+3=0;
(2)2(x-3)2=x(x-3);
(3)用配方法解方程3x2+8x-3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一元二次方程x2+3x=0的解是
 
;用配方法解方程2x2+4x+1=0,配方后得到的方程是
 
;用配方法解方程3x2-6x+1=0,則方程可變形為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程3x2+6x-5=0,則配方后的方程是
(x+1)2=
8
3
(x+1)2=
8
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程3x2+6x-5=0時(shí),原方程應(yīng)變形為
(x+1)2=
8
3
(x+1)2=
8
3

查看答案和解析>>

同步練習(xí)冊(cè)答案