已知二次函數(shù).
(1)用配方法求其圖象的頂點(diǎn)C的坐標(biāo),并描述改函數(shù)的函數(shù)值隨自變量的增減而增減的情況;
(2)求函數(shù)圖象與x軸的交點(diǎn)A,B的坐標(biāo),及△ABC的面積.
(1)(2,-1),當(dāng)x≤2時(shí),y隨x的增大而減少;當(dāng)x>2時(shí),y隨x的增大而增大;(2)(1,0),(3,0),1.

試題分析:(1)配方后求出頂點(diǎn)坐標(biāo)即可.
(2)求出A、B的坐標(biāo),根據(jù)坐標(biāo)求出AB、CD,根據(jù)三角形面積公式求出即可.
試題解析:(1)∵,
∴頂點(diǎn)C的坐標(biāo)是(2,-1),當(dāng)x≤2時(shí),y隨x的增大而減少;當(dāng)x>2時(shí),y隨x的增大而增大.
(2)解方程x2-4x+3=0得:x1=3,x2=1,
∴A點(diǎn)的坐標(biāo)是(1,0),B點(diǎn)的坐標(biāo)是(3,0).
如圖,過(guò)C作CD⊥AB于D,
∵AB=2,CD=1,∴SABC=AB×CD=×2×1=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)(a≠0)的圖象經(jīng)過(guò)點(diǎn)A,點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)若反比例函數(shù)(x>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn)落在兩個(gè)相鄰的正整數(shù)之間,請(qǐng)你直接寫出這兩個(gè)相鄰的正整數(shù);
(3)若反比例函數(shù)(x>0,k>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn),且,試求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線(b,c均為常數(shù))與x軸交于兩點(diǎn),與y軸交于點(diǎn)
(1)求該拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)若P是拋物線上一點(diǎn),且點(diǎn)P到拋物線的對(duì)稱軸的距離為3,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間(時(shí))的關(guān)系可近似地用二次函數(shù)刻畫;1.5時(shí)后(包括1.5時(shí))y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:
①喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少?
②當(dāng)=5時(shí),y=45.求k的值.
(2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2,  求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C.
(1)直接寫出A、D、C三點(diǎn)的坐標(biāo);
(2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使得MD+MC的值最小,并求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱的對(duì)稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、C、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+2x+c的頂點(diǎn)為A(―1,―4),與y軸交于點(diǎn)B,與x軸負(fù)半軸交于點(diǎn)C.

(1)求這條拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P為第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),連接BC、PC、PB,求△BCP面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)E為拋物線上的一點(diǎn),點(diǎn)F為x軸上的一點(diǎn),若四邊形ABEF為平行四邊形,請(qǐng)直接寫出所有符合條件的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對(duì)稱軸上求一點(diǎn)P,使得△PAC的周長(zhǎng)最小,請(qǐng)?jiān)趫D中畫出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)D是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)D作DE⊥x軸,垂足為E.
①有一個(gè)同學(xué)說(shuō):“在第一象限拋物線上的所有點(diǎn)中,拋物線的頂點(diǎn)Q與x軸相距最遠(yuǎn),所以當(dāng)點(diǎn)D運(yùn)動(dòng)至點(diǎn)Q時(shí),折線D-E-O的長(zhǎng)度最長(zhǎng)”,這個(gè)同學(xué)的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
②若DE與直線BC交于點(diǎn)F.試探究:四邊形DCEB能否為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,直線分別與x軸,y軸交于過(guò)點(diǎn)A,B,點(diǎn)C是第一象限內(nèi)的一點(diǎn),且AB=AC,AB⊥AC,拋物線經(jīng)過(guò)A,C兩點(diǎn),與軸的另一交點(diǎn)為D.
(1)求此拋物線的解析式;
(2)判斷直線AB與CD的位置關(guān)系,并證明你的結(jié)論;
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,B,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案