在同一地平面上有兩棵樹,一棵高6米,另一棵高2米,兩樹相距5米,一只小鳥從一棵樹的樹梢飛到另一棵樹的樹梢,則至少飛了________米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


分解因式:2x2-8=     

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知在⊙O中,AB=CD=EF=HG,BC=DE=FG=AH,則的度數(shù)是(      )

  A.、120°        B.、125°        C.、130°        D.、135° 

 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.

(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.

(3)在拋物線上是否存在點P,使S△PBD=6?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


三角形的三邊a,b,c滿足(ab)2c2=2ab,則此三角形是(  ).

A.銳角三角形  B.直角三角形        C.鈍角三角形  D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


勾股定理是一條古老的數(shù)學定理,它有很多種證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖,利用面積法進行證明,著名數(shù)學家華羅庚曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言.

[定理表述]

請你根據(jù)圖1中的直角三角形敘述勾股定理(用文字及符號語言敘述).

            

圖1                                     圖2

[嘗試證明]

以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a,b為底,以ab為高的直角梯形(如圖2),請你利用圖2,驗證勾股定理.

[知識拓展]

利用圖2中的直角梯形,我們可以證明.其證明步驟如下:

BCab,AD=__________,

又∵在直角梯形ABCD中有BC__________AD(填大小關(guān)系),即__________,

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某學校為了了解九年級體能情況,隨機選取30名學生測試一分鐘仰臥起坐次數(shù),并繪制了如圖的直方圖,學生仰臥起坐次數(shù)在25~30之間的頻率為(  ).

A.0.1              B.0.17             C.0.33             D.0.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列多項式中,不能用公式法分解因式的是(  ).

A.-x2+16y2

B.81(a2b2-2ab)-(ab)2

C.m2

D.-x2y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某工程限期完成,甲隊獨做正好按期完成,乙隊獨做則要延期3天完成.現(xiàn)兩隊先合做2天,再由乙隊獨做,也正好按期完成.如果設(shè)規(guī)定的期限為x天,那么根據(jù)題意可列出方程:①=1;②;③;④.其中正確的個數(shù)為(  ).

A.1            B.2            C.3            D.4

查看答案和解析>>

同步練習冊答案