△ABC中,已知∠A、∠B、∠C的對(duì)邊長(zhǎng)分別為a、b、c,∠C=120°,且2b=a+c,求2cot數(shù)學(xué)公式-cot數(shù)學(xué)公式的值.

解:作△ABC的內(nèi)切圓,分別切AB、BC、CA于D、E、F,圓心為O,
連接OA、OB、OC、OD、OE、OF,
∴AD=AF,BD=BE,CF=CE,
c-AD+n-AD=a,
∴AD=
同理:BE=,CE=,
在Rt△OCE中,cot60°=,
得r=
所以
答:2cot-cot的值是
分析:作△ABC的內(nèi)切圓,分別切AB、BC、CA于D、E、F,圓心為O,連接OA、OB、OC、OD、OE、OF,求出AD、BE、CF,根據(jù)銳角三角函數(shù)求出r,代入求出即可.
點(diǎn)評(píng):本題主要考查對(duì)解直角三角形,三角形的內(nèi)切圓與內(nèi)心,切線(xiàn)長(zhǎng)定理等知識(shí)點(diǎn)的理解和掌握,能求出AD、BE、CE的長(zhǎng)和r的長(zhǎng)是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinA=
1
2
,cosB=
2
2
,則∠C=
105°
105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知AB=5,BC=8,AC=7,動(dòng)點(diǎn)P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線(xiàn)段PQ的最小值等于
30
7
30
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確的有( 。
①Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)為5;
②有一個(gè)內(nèi)角等于其他兩個(gè)內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2-b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知點(diǎn)D,E,F(xiàn)分別為BC,AD,CE的中點(diǎn),且S△ABC=4cm2,則陰影部分的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交點(diǎn),∠EHF的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案