【題目】如圖,某數學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據他們測量數據計算這棵樹CD的高度(結果精確到0.1m).(參考數據:≈1.414,≈1.732)
科目:初中數學 來源: 題型:
【題目】閱讀理解:
如圖①,點C將線段AB分成兩部分,若,則點C為線段AB的黃金分割點.
某研究學習小組,由黃金分割點聯想到“黃金分割線”,從而給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果,那么稱直線l為該圖形的黃金分割線.
問題解決:
如圖②,在△ABC中,已知D是AB的黃金分割點.
(1)研究小組猜想:直線CD是△ABC的黃金分割線,你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組探究發(fā)現:過點C作直線交AB于點E,過點D作DF∥CE,交AC于點F,連接EF(如圖③),則直線EF也是△ABC的黃金分割線.請你說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.
(1)求直線的表達式;
(2)若直線與矩形有公共點,求的取值范圍;
(3)直線與矩形沒有公共點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E是AD邊上的動點,從點A開始沿AD向D運動.以BE為邊,在BE的上方作正方形BEFG,EF交DC于點H,連接CG、BH.請?zhí)骄浚?/span>
(1)線段AE與CG是否相等?請說明理由.
(2)若設AE=x,DH=y,當x取何值時,y最大?最大值是多少?
(3)當點E運動到AD的何位置時,△BEH∽△BAE?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax(x﹣3)+c(a<0,0≤x≤3),反比例函數y=(x>0,k>0)圖象如圖1所示,反比例函數y=(x>0,k>0)的圖象經過點P(m,n),PM⊥x軸,垂足為M,PN⊥y軸,垂足為N;且OMON=12.
(1)求k的值;
(2)當c=0時,計算拋物線與x軸的兩個交點之間的距離.
(3)確定二次函數y=ax(x﹣3)+c(a<0,0≤x≤3)對稱軸.
(4)如圖2,當a=﹣1時,拋物線y=ax(x﹣3)+c(a<0;0≤x≤3)有一時刻恰好經過P點,且此時拋物線與雙曲線y=(x>0,k>0)有且只有一個公共點P(如圖2所示),我們不妨把此時刻的c記作c1,請直接寫出拋物線y=ax(x﹣3)+c(a<0,0≤x≤3)的圖象與雙曲線y=(x>0,k>0)的圖象有一個公共點時c的取值范圍.(溫馨提示:c1作為已知數,可直接應用哦!)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖①、②、③均是6×6的正方形網格,每個小正方形的頂點稱為格點,小正方形邊長為1,點A、C在格點上.在給定的網格中按要求畫圖,所面圖形的頂點均在格點上.
(1)在圖①中畫出以AC為底邊的等腰直角三角形ABC;
(2)在圖②中畫出以AC為腰的等腰三角形ACD,且△ACD的面積為8;
(3)在圖③中作一個平行四邊形ACMN,使平行四邊形ACMN的面積為(1)中△ABC面積的2倍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩個全等的含30°角的直角三角板重疊在一起,如圖,將△A′B′C′繞AC的中點M轉動,斜邊A′B′剛好過△ABC的直角頂點C,且與△ABC的斜邊AB交于點N,連接AA′、C′C、AC′.若AC的長為2,有以下五個結論:①AA′=1;②C′C⊥A′B′;③點N是邊AB的中點;④四邊形AA′CC′為矩形;⑤A′N=B′C=,其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園讀詩詞誦經典比賽”結束后,評委劉老師將此次所有參賽選手的比賽成績(得分均為整數)進行整理,并分別繪制成扇形統(tǒng)計圖和頻數直方圖,部分信息如下圖:
扇形統(tǒng)計圖 頻數直方圖
(1)參加本次比賽的選手共有________人,參賽選手比賽成績的中位數在__________分數段;補全頻數直方圖.
(2)若此次比賽的前五名成績中有名男生和名女生,如果從他們中任選人作為獲獎代表發(fā)言,請利用表格或畫樹狀圖求恰好選中男女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知PA,PB分別與⊙O相切于點A,B,∠APB=80°,C為⊙O上一點.
(1)如圖①,求∠ACB的大。
(2)如圖②,AE為⊙O的直徑,AE與BC相交于點D.若AB=AD,求∠EAC的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com