(2013•路北區(qū)三模)如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點(diǎn)P、Q分別從B、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,設(shè)它們運(yùn)動(dòng)的時(shí)間為x(s).
(1)求x為何值時(shí),PQ⊥AC;
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<2時(shí),求y與x的函數(shù)關(guān)系式;
(3)當(dāng)0<x<2時(shí),求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫(xiě)出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫(xiě)出過(guò)程).
分析:(1)若使PQ⊥AC,則根據(jù)路程=速度×?xí)r間表示出CP和CQ的長(zhǎng),再根據(jù)30度的直角三角形的性質(zhì)列方程求解;
(2)首先畫(huà)出符合題意的圖形,再根據(jù)路程=速度×?xí)r間表示出BP,CQ的長(zhǎng),根據(jù)等邊三角形的三線合一求得PD的長(zhǎng),根據(jù)30度的直角三角形的性質(zhì)求得PD邊上的高,再根據(jù)面積公式進(jìn)行求解;
(3)根據(jù)三角形的面積公式,要證明AD平分△PQD的面積,只需證明O是PQ的中點(diǎn).根據(jù)題意可以證明BP=CN,則PD=DN,再根據(jù)平行線等分線段定理即可證明;
(4)根據(jù)(1)中求得的值即可分情況進(jìn)行討論.
解答:解:(1)當(dāng)Q在AB上時(shí),顯然PQ不垂直于AC,
當(dāng)Q在AC上時(shí),由題意得,BP=x,CQ=2x,PC=4-x;
∵AB=BC=CA=4,
∴∠C=60°;
若PQ⊥AC,則有∠QPC=30°,
∴PC=2CQ,
∴4-x=2×2x,
∴x=
4
5


(2)y=-
3
2
x2+
3
x,
如圖,當(dāng)0<x<2時(shí),P在BD上,Q在AC上,過(guò)點(diǎn)Q作QN⊥BC于N;
∵∠C=60°,QC=2x,
∴QN=QC×sin60°=
3
x;
∵AB=AC,AD⊥BC,
∴BD=CD=
1
2
BC=2,
∴DP=2-x,
∴y=
1
2
PD•QN=
1
2
(2-x)•
3
x=-
3
2
x2+
3
x;

(3)當(dāng)0<x<2時(shí),在Rt△QNC中,QC=2x,∠C=60°;
∴NC=x,
∴BP=NC,
∵BD=CD,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴AD∥QN,
∴OP=OQ,
∴S△PDO=S△DQO
∴AD平分△PQD的面積;

(4)顯然,不存在x的值,使得以PQ為直徑的圓與AC相離,
由(1)可知,當(dāng)x=
4
5
時(shí),以PQ為直徑的圓與AC相切;
當(dāng)點(diǎn)Q在AB上時(shí),8-2x=
x
2
,解得x=
16
5
,
故當(dāng)x=
4
5
16
5
時(shí),以PQ為直徑的圓與AC相切,
當(dāng)0≤x<
4
5
4
5
<x<
16
5
16
5
<x≤4時(shí),以PQ為直徑的圓與AC相交.
點(diǎn)評(píng):此題綜合運(yùn)用了等邊三角形的性質(zhì)、直角三角形的性質(zhì)以及直線和圓的位置關(guān)系求解.解題的關(guān)鍵是用動(dòng)點(diǎn)的時(shí)間x和速度表示線段的長(zhǎng)度,本題有一定的綜合性,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)某市教育局為了了解初一學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),隨機(jī)抽查本市部分初一學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖).

請(qǐng)你根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)a=
25
25
%,并寫(xiě)出該扇形所對(duì)圓心角的度數(shù)為
90
90
;補(bǔ)全條形圖;
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該市有初一學(xué)生20000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于5天”的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)已知扇形的半徑為2,圓心角為60°,則扇形的弧長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)已知:如圖,直線MN交⊙O于A、B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥MN,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若∠ADE=30°,⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)若|+a|=2,則a的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案