已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當(dāng)△ODP是腰長為5的等腰三角形時,則P點的坐標(biāo)為( 。
分析:根據(jù)當(dāng)OP=OD時,以及當(dāng)OD=PD時和當(dāng)OP=PD時,分別進行討論得出P點的坐標(biāo),再選擇即可.
解答:解:過P作PM⊥OA于M.
(1)當(dāng)OP=OD時,
OP=5,CO=4,
∴易得CP=3,
∴P(3,4);

(2)當(dāng)OD=PD時,
PD=DO=5,PM=4,
∴易得MD=3,從而CP=2或CP'=8,
∴P(2,4)或(8,4);

(3)當(dāng)OP=PD時,易得CP=2.5,不合題意,舍去.
綜上,滿足題意的點P的坐標(biāo)為(3,4)、(2,4)、(8,4),
故選D.
點評:此題主要考查了矩形的性質(zhì)以及坐標(biāo)與圖形的性質(zhì)和等腰三角形的性質(zhì),根據(jù)△ODP是腰長為5的等腰三角形進行分類討論是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O為坐標(biāo)原點,半徑為4的⊙Q與y軸相切于點O,圓心Q在x軸的負半軸上.精英家教網(wǎng)
(1)請直接寫出圓心Q的坐標(biāo);
(2)設(shè)一次函數(shù)y=-2mx+2m的圖象與x軸的正半軸、y軸的正半軸分別相交于點A、B,且T在y軸上,OT=2,連接QT,∠OQT=∠OBA.
①求m的值;
②試問在y=-2mx+2m的圖象上是否存在點P,使得⊙P與⊙Q、y軸都相切?若存在,請求出圓心P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當(dāng)△ODP是腰長為5的等腰三角形時,則P點的坐標(biāo)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在邊BC上以每秒1個單位長的速度由點C向點B運動.
(1)當(dāng)t為何值時,四邊形PODB是平行四邊形?
(2)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值;若不存在,請說明理由;
(3)△OPD為等腰三角形時,寫出點P的坐標(biāo)(不必寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上以每秒1個單位的速度由C向B運動.
(1)求梯形ODPC的面積S與時間t的函數(shù)關(guān)系式.
(2)t為何值時,四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點Q,使得ODQP為菱形.若存在求t值,若不存在,說明理由.
(4)當(dāng)△OPD為等腰三角形時,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案