如圖,若點(diǎn)P為正方形ABCD邊AB上一點(diǎn),以PA為一邊作正方形AEFP,連BE、DP,并延長(zhǎng)DP交BE于點(diǎn)H,求證:DH⊥BF.

解:在△PAD和△EAB中,

∴△PAD≌△EAB,即∠EBA=∠PDA,
又∠HDE+∠DPA=90°,∠EBA=∠PDA,∠DPA=∠BPH(對(duì)頂角相等),
∴∠EBA+∠BPH=90°,
∴∠DHB=90°,
∴DH⊥BE.
分析:先求證△PAD≌△EAB,求得∠EBA=∠PDA,根據(jù)∠HDE+∠DPA=90°,∠EBA=∠PDA,∠DPA=∠BPH,得出∠EBA+∠BPH=90°,即可得出DH⊥BF.
點(diǎn)評(píng):本題考查了正方形各邊長(zhǎng)相等且各內(nèi)角為直角的性質(zhì),全等三角形的判定和全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中正確的求∠PDA+∠EAB=90°是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

正方形ABCD中,點(diǎn)F為正方形ABCD內(nèi)的點(diǎn),△BFC繞著點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°后與△BEA重合.

(1)如圖①,若正方形ABCD的邊長(zhǎng)為2,BE=1,F(xiàn)C=
3
,求證:AE∥BF.
(2)如圖②,若點(diǎn)F為正方形ABCD對(duì)角線AC上的點(diǎn)(點(diǎn)F不與點(diǎn)A、C重合),試猜想:AE2+AF2=2BF2是否成立?如果成立,請(qǐng)加以證明;如果不成立,試舉一反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•中山區(qū)二模)已知:如圖1,點(diǎn)O為正方形ABCD內(nèi)任一點(diǎn),連接AO、BO,分別以AO、BO為一邊作如圖所示正方形BOMN和正方形AOFE,連接CN
(1)AE、CN之間有怎樣的關(guān)系?請(qǐng)驗(yàn)證;
(2)若點(diǎn)O是正方形ABCD外部一點(diǎn),如圖2,其他條件不變(1)的結(jié)論是否成立?請(qǐng)驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,若點(diǎn)P為正方形ABCD邊AB上一點(diǎn),以PA為一邊作正方形AEFP,連BE、DP,并延長(zhǎng)DP交BE于點(diǎn)H,求證:DH⊥BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年遼寧省大連市中山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知:如圖1,點(diǎn)O為正方形ABCD內(nèi)任一點(diǎn),連接AO、BO,分別以AO、BO為一邊作如圖所示正方形BOMN和正方形AOFE,連接CN
(1)AE、CN之間有怎樣的關(guān)系?請(qǐng)驗(yàn)證;
(2)若點(diǎn)O是正方形ABCD外部一點(diǎn),如圖2,其他條件不變(1)的結(jié)論是否成立?請(qǐng)驗(yàn)證.

查看答案和解析>>

同步練習(xí)冊(cè)答案