(2008•衡陽(yáng))如圖,點(diǎn)C、E、B、F在同一直線上,AC∥DF,AC=DF,BC=EF.
求證:AB=DE.

【答案】分析:證明AB=DE,可以通過(guò)全等三角形來(lái)求得.三角形ABC和DEF中,已知的條件有:AC=DF,BC=EF,只要再證得兩對(duì)應(yīng)邊的夾角相等即可得出全等的結(jié)論.
解答:證明:∵AC∥DF,
∴∠C=∠F.
在△ACB和△DFE中,
∴△ACB≌△DFE(SAS).
∴AB=DE.
點(diǎn)評(píng):此題考查簡(jiǎn)單的線段相等,可以通過(guò)全等三角形來(lái)證明,要判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•衡陽(yáng))如圖1,在平面直角坐標(biāo)系中,等邊三角形ABC的兩頂點(diǎn)坐標(biāo)分別為A(1,0),B(2,),CD為△ABC的中線,⊙M與△ACD的外接圓,BC交⊙M于點(diǎn)N.
(1)將直線AB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)使得到的直線l與⊙M相切,求此時(shí)的旋轉(zhuǎn)角及直線l的解析式;
(2)連接MN,試判斷MN與CD是否互相垂直平分,并說(shuō)明理由;
(3)在(1)中的直線l上是否存在點(diǎn)P,使△PAN為直角三角形?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(圖2為備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(02)(解析版) 題型:選擇題

(2008•衡陽(yáng))如圖所示,邊長(zhǎng)分別為1和2的兩個(gè)正方形,它們有一邊在同一水平線上,小正方形沿該水平線自左向右勻速穿過(guò)大正方形,設(shè)穿過(guò)的時(shí)間為t,大正方形內(nèi)除去小正方形部分的面積為S(陰影部分),那么S與t之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省溫州市場(chǎng)橋中學(xué)九年級(jí)(下)第一次階段考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•衡陽(yáng))如圖所示,邊長(zhǎng)分別為1和2的兩個(gè)正方形,它們有一邊在同一水平線上,小正方形沿該水平線自左向右勻速穿過(guò)大正方形,設(shè)穿過(guò)的時(shí)間為t,大正方形內(nèi)除去小正方形部分的面積為S(陰影部分),那么S與t之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(城北初中 沈彩芳)(解析版) 題型:選擇題

(2008•衡陽(yáng))如圖所示,邊長(zhǎng)分別為1和2的兩個(gè)正方形,它們有一邊在同一水平線上,小正方形沿該水平線自左向右勻速穿過(guò)大正方形,設(shè)穿過(guò)的時(shí)間為t,大正方形內(nèi)除去小正方形部分的面積為S(陰影部分),那么S與t之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省德州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2008•衡陽(yáng))如圖所示,邊長(zhǎng)分別為1和2的兩個(gè)正方形,它們有一邊在同一水平線上,小正方形沿該水平線自左向右勻速穿過(guò)大正方形,設(shè)穿過(guò)的時(shí)間為t,大正方形內(nèi)除去小正方形部分的面積為S(陰影部分),那么S與t之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案