【題目】一方有難,八方支援.已知甲、乙兩地急需一批物資,其中甲地需要240噸,乙地需要260噸.AB兩城市通過募捐,很快籌集齊了這種物資,其中A城市籌到物資200噸,B城市籌到物資300噸.已知從AB兩城市將每噸物資分別運(yùn)往甲、乙兩地所需運(yùn)費(fèi)成本(單位:元/噸)如表所示.問:怎樣調(diào)運(yùn)可使總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)為多少元?

【答案】A城市運(yùn)往乙地200噸物資,B城市運(yùn)往甲地240噸物資,B城市運(yùn)往乙地60噸物資,運(yùn)費(fèi)最少為200800元.

【解析】

設(shè)A城市運(yùn)往甲地x噸物資(0x200),總運(yùn)費(fèi)為W元,根據(jù)題意,列出一次函數(shù)解析式,根據(jù)一次函數(shù)的性質(zhì),即可得到結(jié)論.

設(shè)A城市運(yùn)往甲地x噸物資(0x200),總運(yùn)費(fèi)為W元,則:

W=400x500200x)+300240x)+480[300-(240x]

=80x200800

k=800,

W隨著x的增大而增大,

x=0時(shí),W取得最小值為200800元.

答:A城市運(yùn)往乙地200噸物資,B城市運(yùn)往甲地240噸物資,B城市運(yùn)往乙地60噸物資,運(yùn)費(fèi)最少為200800元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn)E的中點(diǎn),連接,過點(diǎn)D于點(diǎn)F,過點(diǎn)C于點(diǎn)N,延長(zhǎng)于點(diǎn)M

1)求證:

2)連接CF,并延長(zhǎng)CFABG

①若,求的長(zhǎng)度;

②探究當(dāng)為何值時(shí),點(diǎn)G恰好為AB的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年 3 月 12 日植樹節(jié)期間, 學(xué)校預(yù)購(gòu)進(jìn) A、B 兩種樹苗,若購(gòu)進(jìn) A種樹苗 3 棵,B 種樹苗 5 棵,需 2100 元,若購(gòu)進(jìn) A 種樹苗 4 棵,B 種樹苗 10棵,需 3800 元.

(1)求購(gòu)進(jìn) A、B 兩種樹苗的單價(jià);

(2)若該單位準(zhǔn)備用不多于 8000 元的錢購(gòu)進(jìn)這兩種樹苗共 30 棵,求 A 種樹苗至少需購(gòu)進(jìn)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)畢業(yè)生小李自主創(chuàng)業(yè),開了一家小商品超市.已知超市中某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,每個(gè)月可賣出180件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月就會(huì)少賣出10件,但每件售價(jià)必須低于34元,設(shè)每件商品的售價(jià)上漲元(為非負(fù)整數(shù)),每個(gè)月的銷售利潤(rùn)為.

1)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

2)利用函數(shù)關(guān)系式求出每件商品的售價(jià)為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

3)利用函數(shù)關(guān)系式求出每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰好是1920元?這時(shí)每件商品的利潤(rùn)率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),ADCD,(點(diǎn)D在⊙O外)AC平分∠BAD

(1)求證:CD是⊙O的切線;

(2)若DC、AB的延長(zhǎng)線相交于點(diǎn)E,且DE=12,AD=9,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c的圖象,下列結(jié)論:①2ab;②ab+c0;③ab;④ac,其中正確的結(jié)論是(  )

A.①③B.②③C.①④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[問題]小明在學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:求不等式x3+3x2x30的解集.

他經(jīng)歷了如下思考過程:

[回顧]

1)如圖1,在平面直角坐標(biāo)系xOy中,直線y1ax+b與雙曲線y2交于A 1,3)和B(﹣3,﹣1),則不等式ax+b的解集是   

[探究]將不等式x3+3x2x30按條件進(jìn)行轉(zhuǎn)化:

當(dāng)x0時(shí),原不等式不成立;

當(dāng)x0時(shí),不等式兩邊同除以x并移項(xiàng)轉(zhuǎn)化為x2+3x1;

當(dāng)x0時(shí),不等式兩邊同除以x并移項(xiàng)轉(zhuǎn)化為x2+3x1

2)構(gòu)造函數(shù),畫出圖象:

設(shè)y3x2+3x1,y4,在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象;

雙曲線y4如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫出拋物線yx2+3x1.(不用列表)

3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo):

觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗(yàn)證可知:滿足y3y4的所有x的值為   

[解決]

4)借助圖象,寫出解集:

結(jié)合探究中的討論,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+3x2x30的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一批貨物準(zhǔn)備運(yùn)往某地,有甲、乙、丙三輛卡車可雇用.已知甲、乙、丙三輛車每次運(yùn)貨量不變,且甲、乙兩車單獨(dú)運(yùn)完這批貨物分別用次;甲、丙兩車合運(yùn)相同次數(shù),運(yùn)完這批貨物,甲車共運(yùn)噸;乙、丙兩車合運(yùn)相同次數(shù),運(yùn)完這批貨物乙車共運(yùn)噸,現(xiàn)甲、乙、丙合運(yùn)相同次數(shù)把這批貨物運(yùn)完,貨主應(yīng)付甲車主的運(yùn)費(fèi)為___________ .(按每噸運(yùn)費(fèi)元計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點(diǎn),連接DE.過點(diǎn)AAFDE,垂足為F,⊙O經(jīng)過點(diǎn)C、DF,與AD相交于點(diǎn)G

(1)求證:△AFG∽△DFC;

(2)若正方形ABCD的邊長(zhǎng)為4,AE=1,求O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案