直線y=x+2和拋物線y=x2+2x的交點(diǎn)坐標(biāo)為       
【答案】分析:本題可聯(lián)立兩個(gè)函數(shù)的解析式,所得方程組的解,就是兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo).
解答:解:聯(lián)立兩函數(shù)的解析式,可得:,解得,
所以直線y=x+2和拋物線y=x2+2x的交點(diǎn)坐標(biāo)為(-2,0)或(1,3).
點(diǎn)評(píng):本題考查的是函數(shù)圖象交點(diǎn)的求法.函數(shù)圖象交點(diǎn)坐標(biāo)為兩函數(shù)解析式組成的方程組的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫(xiě)出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線DE的距離是否等于線段的OE長(zhǎng);
(2)動(dòng)點(diǎn)F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時(shí)點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過(guò)拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線,如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱(chēng)這個(gè)矩形是這條拋物線的內(nèi)接矩形,請(qǐng)你理解上述定義,解答下面的問(wèn)題:若矩形OABC是某個(gè)拋物線的周長(zhǎng)最大的內(nèi)接矩形,求這個(gè)拋物線的解析式(利用圖2解答).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南)如圖,濟(jì)南建邦大橋有一段拋物線型的拱梁,拋物線的表達(dá)式為y=ax2+bx.小強(qiáng)騎自行車(chē)從拱梁一端O沿直線勻速穿過(guò)拱梁部分的橋面OC,當(dāng)小強(qiáng)騎自行車(chē)行駛10秒時(shí)和26秒時(shí)拱梁的高度相同,則小強(qiáng)騎自行車(chē)通過(guò)拱梁部分的橋面OC共需
36
36
秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,濟(jì)南建邦大橋有一段拋物線型的拱梁,拋物線的表達(dá)式為y=ax2+bx.小強(qiáng)騎自行車(chē)從拱梁一端O沿直線勻速穿過(guò)拱梁部分的橋面OC,當(dāng)小強(qiáng)騎自行車(chē)行駛10秒時(shí)和26秒時(shí)拱梁的高度相同,則小強(qiáng)騎自行車(chē)通過(guò)拱梁部分的橋面OC共需
36
36
s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第34章《二次函數(shù)》中考題集(40):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫(xiě)出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線DE的距離是否等于線段的OE長(zhǎng);
(2)動(dòng)點(diǎn)F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時(shí)點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過(guò)拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線,如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱(chēng)這個(gè)矩形是這條拋物線的內(nèi)接矩形,請(qǐng)你理解上述定義,解答下面的問(wèn)題:若矩形OABC是某個(gè)拋物線的周長(zhǎng)最大的內(nèi)接矩形,求這個(gè)拋物線的解析式(利用圖2解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西省貴港市九年級(jí)第一次教學(xué)質(zhì)量監(jiān)測(cè)數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖所示,在平面直角坐標(biāo)系中,頂點(diǎn)為(,)的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)), 已知點(diǎn)坐標(biāo)為(,).

 

 

 

 

 

 

 

(1)求此拋物線的解析式;

(2)過(guò)點(diǎn)作線段的垂線交拋物線于點(diǎn),

如果以點(diǎn)為圓心的圓與直線相切,請(qǐng)判斷拋物

線的對(duì)稱(chēng)軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于,

兩點(diǎn)之間,問(wèn):當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),

面積最大?并求出此時(shí)點(diǎn)的坐標(biāo)和的最大面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案