【題目】如圖,一次函數(shù)y1=kx+n(k0)與二次函數(shù)y2=ax2+bx+c(a0)的圖象相交于A(﹣1,5)、B(9,2)兩點(diǎn),則關(guān)于x的不等式kx+nax2+bx+c的解集為(  )

A. ﹣1x9 B. ﹣1x9 C. ﹣1x9 D. x﹣1x9

【答案】A

【解析】先觀察圖象確定拋物線y2=ax2+bx+ca≠0)和一次函數(shù)y1=kx+nk≠0)的交點(diǎn)的橫坐標(biāo),即可求出y1≥y2時(shí),x的取值范圍.

解:由圖形可以看出:拋物線y2=ax2+bx+ca≠0)和一次函數(shù)y1=kx+nk≠0)的交點(diǎn)的橫坐標(biāo)分別為﹣1,9,

當(dāng)y1≥y2時(shí),x的取值范圍正好在兩交點(diǎn)之內(nèi),即﹣1≤x≤9

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的標(biāo)價(jià)為200元,8折銷售仍賺40元,則商品進(jìn)價(jià)為(  )元.
A.140
B.120
C.160
D.100

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2mx﹣6my=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度的方格紙中,有一個(gè)[Math Processing Error] 和一點(diǎn)O,[Math Processing Error] 的頂點(diǎn)與點(diǎn)O均與小正方形的頂點(diǎn)重合。

1)在方格紙中,將[Math Processing Error] 向下平移6個(gè)單位長(zhǎng)度得到[Math Processing Error] ,請(qǐng)畫[Math Processing Error]

2)在方格紙中,將[Math Processing Error] 繞點(diǎn)O旋轉(zhuǎn)180°得到[Math Processing Error] ,請(qǐng)畫[Math Processing Error]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為, 、分別是、、上的動(dòng)點(diǎn),且

)求證:四邊形是正方形.

)判斷直線是否經(jīng)過某一定點(diǎn),說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)甲、乙兩班舉行電腦漢字輸入比賽兩個(gè)班能參加比賽的學(xué)生每分鐘輸入漢字的個(gè)數(shù),經(jīng)統(tǒng)計(jì)和計(jì)算后結(jié)果如下表

有一位同學(xué)根據(jù)上面表格得出如下結(jié)論

①甲、乙兩班學(xué)生的平均水平相同;②乙班優(yōu)秀人數(shù)比甲班優(yōu)秀人數(shù)多(每分鐘輸入漢字達(dá)150個(gè)以上為優(yōu)秀);③甲班學(xué)生比賽成績(jī)的波動(dòng)比乙班學(xué)生比賽成績(jī)的波動(dòng)大

上述結(jié)論正確的是_______(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=mx+n(m,n為常數(shù))經(jīng)過點(diǎn)(0,﹣2)和(3,0),則關(guān)于x的方程mx+n=0的解為(  )

A. x=0 B. x=1 C. x=﹣2 D. x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果把鐘表的時(shí)針在任一時(shí)刻所在的位置作為起始位置,那么時(shí)針旋轉(zhuǎn)出一個(gè)平角及一個(gè)周角,至少需要多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(-10,0),B(-6,0),點(diǎn)C在y軸的正半軸上,CBO=45°,CDAB,CDA=90°.點(diǎn)P從點(diǎn)Q(8,0)出發(fā),沿x軸向左以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)求點(diǎn)C的坐標(biāo).

(2)當(dāng)BCP=15°時(shí),求t的值.

(3)以PC為直徑作圓,當(dāng)該圓與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案