精英家教網 > 初中數學 > 題目詳情

在平面直角坐標系中,一次函數y=kx+b(k,b為常數k≠0,b>0)的圖象可以看成是將正比例函數y=kx的圖象沿y軸向上平行移動b個單位得到的,那么將正比例函數y=kx的圖象沿x軸向右平行移動m個單位(m>0)得到的函數解析式為


  1. A.
    y=kx+m
  2. B.
    y=kx-m
  3. C.
    y=k(x+m)
  4. D.
    y=k(x-m)
D
分析:由于平移時k的值不變,可在原直線上找一點(1,k),向右平移m個單位長度為(1+m,k),把它代入新直線的解析式:y=kx+b,應用待定系數法即可求出.
解答:從原直線上找一點(1,k),向右平移m個單位長度為(1+m,k),它在新直線上,
可設新直線的解析式為:y=kx+b,
代入得b=-km.
故得到的直線解析式是y=kx-km.
故選D.
點評:本題考查用待定系數法求函數解析式,比較簡單,關鍵是平移不改變k的值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經過A、B、C三點的函數關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數倍)
,k=
2

查看答案和解析>>

同步練習冊答案