【題目】如圖1,在△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于點(diǎn)A1,
(1)分別計(jì)算:當(dāng)∠A分別為700、800時,求∠A1的度數(shù).
(2)根據(jù)(1)中的計(jì)算結(jié)果,寫出∠A與∠A1之間的數(shù)量關(guān)系___________________.
(3)∠A1BC的角平分線與∠A1CD的角平分線交于點(diǎn)A2,∠A2BC的角平分線與∠A2CD的角平分線交于點(diǎn)A3,如此繼續(xù)下去可得A4,…,∠An,請寫出∠A5與∠A的數(shù)量關(guān)系_________________.
(4)如圖2,若E為BA延長線上一動點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動時,有下面兩個結(jié)論:①∠Q+∠A1的值為定值;②∠D-∠A1的值為定值.
其中有且只有一個是正確的,請寫出正確的結(jié)論,并求出其值.
【答案】(1)∠A1=350 和∠A1=400;(2)∠A=2∠A1;(3)∠A5=∠A;(4)①的結(jié)論是正確的,∠Q+∠A1=1800
【解析】
(1)由三角形的外角性質(zhì)易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1,可得∠A1=(∠ACD-∠ABC)=∠A
(2)根據(jù)(1)可得到∠A=2∠A1
(3)根據(jù)(1)可得到∠A2=∠A1=∠A,∠A3=∠A2=∠A,…依此類推,∠An=∠A,根據(jù)這個規(guī)律即可解題.
(4)用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.
解:(1)∵A1C、A1B分別是∠ACD、∠ABC的角平分線
∴∠A1BC= ∠ABC,∠A1CD=∠ACD
由三角形的外角性質(zhì)知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:
∠A1=(∠ACD-∠ABC)=∠A;
當(dāng)∠A=70°時,∠A1=35°;當(dāng)∠A=80°,∠A1=40°.
(2)由(1)可知∠A1==∠A
即∠A=2∠A1
(3)同(1)可求得:
∠A2=∠A1=∠A,
∠A3=∠A2=∠A,
…
依此類推,∠An=∠A;
當(dāng)n=5時,∠A5=∠A=∠A
(4)△ABC中,由三角形的外角性質(zhì)知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);
即:2∠A1=2(180°-∠Q),
化簡得:∠A1+∠Q=180°
故①的結(jié)論是正確的,且這個定值為180°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的邊的邊分別在軸,軸正半軸上,, 點(diǎn)從點(diǎn)出發(fā)以每秒2個單位長度的速度向終點(diǎn)運(yùn)動,點(diǎn)不與點(diǎn)重合以為邊在上方作正方形,設(shè)正方形與的重疊部分圖形的面積為(平方單位),點(diǎn)的運(yùn)動時間為(秒).
(1)直線所在直線的解析式是__________________________.
(2)當(dāng)點(diǎn)落在線段上時,求的值.
(3)在點(diǎn)運(yùn)動的過程中,求與之間的函數(shù)關(guān)系式;
(4)設(shè)邊的中點(diǎn)為,點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,以為邊在上方作正方形當(dāng)正方形與重疊部分圖形為三角形時,直接寫出的取值范圍.
(提示:根據(jù)點(diǎn)的運(yùn)動,可在草紙上畫出正方形與重疊部分圖形為不同圖形時的臨界狀態(tài)去研究.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動,同時點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)運(yùn)動的時間是.過點(diǎn)作于點(diǎn)連結(jié)
(1)求證:;
(2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值,如果不能,說明理由;
(3)當(dāng)為何值時,為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點(diǎn)E是點(diǎn)D關(guān)于AB的對稱點(diǎn),M是AB上的一動點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為美化市容市貌,我市在春節(jié)前夕計(jì)劃在市區(qū)幾個公園建造、兩種型號花燈供市民觀賞,根據(jù)預(yù)算,共需資金萬元.若建造一個種花燈和兩個類種花燈共 需資金萬元;建造兩個種花燈和一個種花燈共需資金萬元.
(1)問建造一個種型號花燈和一個種型號花燈所需資金分別是多少萬元?
(2)若建造種型號花燈不超過個,則種型號花燈至少要建造多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:已知如圖,DG⊥BC于G,AC⊥BC于C,FE⊥AB于E,∠1=∠2,請說明CD⊥AB的理由:
解:∵DG⊥BC,AC⊥BC(已知)
∴∠DGC=∠ACB=90°(垂直定義
∴∠DGC+∠ACB=180°
∴DG∥AC(_________________________)
∴∠2=∠DCA(兩直線平行,內(nèi)錯角相等)
∵∠1=∠2(已知)
∴∠______=∠_____(等量代換)
∴EF∥CD(_____________________)
∴∠AEF=∠ADC(___________________)
∴FE⊥AB(已知)
∴AEF=90°(垂直定義)
∴∠ADC=90°
∴CD⊥AB(垂直定義)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com