如圖,在平面直角坐標(biāo)系中直線軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點B(m,2).將直線向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式是      

 

 

【答案】

y=x+7.

【解析】

試題分析:將B坐標(biāo)代入直線y=x﹣2中得:m﹣2=2,解得:m=4,∴B(4,2),即BE=4,OE=2.

設(shè)反比例解析式為,將B(4,2)代入反比例解析式得:k=8,∴反比例解析式為.

設(shè)平移后直線解析式為y=x+b,C(a,a+b),

對于直線y=x﹣2,令x=0求出y=﹣2,得到OA=2,

如圖,過C作CD⊥y軸,過B作BE⊥y軸,

將C坐標(biāo)代入反比例解析式得:a(a+b)=8①,

,∴②.

①②聯(lián)立,解得:b=7.

∴平移后直線解析式為y=x+7.

考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.平移問題;3.待定系數(shù)法的應(yīng)用;4.曲線上點的坐標(biāo)與方程的關(guān)系;5.轉(zhuǎn)換思想的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案