【題目】某市為了打造森林城市,樹立城市新地標(biāo),實(shí)現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量“望月閣”的高度,來檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測(cè)點(diǎn)與“望月閣”底部間的距離不易測(cè)得,因此經(jīng)過研究需要兩次測(cè)量,于是他們首先用平面鏡進(jìn)行測(cè)量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),小亮看著鏡面上的標(biāo)記,他來回走動(dòng),走到點(diǎn)D時(shí),看到“望月閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測(cè)得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測(cè)影長(zhǎng)的方法進(jìn)行了第二次測(cè)量,方法如下:如圖,小亮從D點(diǎn)沿DM方向走了16米,到達(dá)“望月閣”影子的末端F點(diǎn)處,此時(shí),測(cè)得小亮身高FG的影長(zhǎng)FH=2.5米,F(xiàn)G=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測(cè)量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長(zhǎng)度.
【答案】解:由題意可得:∠ABC=∠EDC=∠GFH=90°,
∠ACB=∠ECD,∠AFB=∠GHF,
故△ABC∽△EDC,△ABF∽△GFH,
則 , ,
即 , ,
解得:AB=99,
答:“望月閣”的高AB的長(zhǎng)度為99m.
【解析】根據(jù)鏡面反射原理結(jié)合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,進(jìn)而利用相似三角形的性質(zhì)得出AB的長(zhǎng).
此題主要考查了相似三角形的判定與性質(zhì),正確利用已知得出相似三角形是解題關(guān)鍵.
【考點(diǎn)精析】本題主要考查了相似三角形的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知△ABC,任取一點(diǎn)O,連AO,BO,CO,并取它們的中點(diǎn)D,E,F(xiàn),得△DEF,則下列說法正確的個(gè)數(shù)是( 。
①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長(zhǎng)比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接杭州G20峰會(huì),某校開展了設(shè)計(jì)“YJG20”圖標(biāo)的活動(dòng),下列圖形中及時(shí)軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長(zhǎng)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,已知△ABC,請(qǐng)畫出△ABC關(guān)于直線AC對(duì)稱的三角形.
問題探究
(2)如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長(zhǎng)最小?若存在,求出它周長(zhǎng)的最小值;若不存在,請(qǐng)說明理由.
問題解決
(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一幅長(zhǎng)20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2 .
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點(diǎn),BP=3,Q是CD邊上一動(dòng)點(diǎn),將梯形APQD沿直線PQ折疊,A的對(duì)應(yīng)點(diǎn)A′.當(dāng)CA′的長(zhǎng)度最小時(shí),CQ的長(zhǎng)為( )
A.5
B.7
C.8
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com