【題目】如圖所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),在線段AD上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)D運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△DPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),四邊形PCDQ是平行四邊形?
(3)分別求出當(dāng)t為何值時(shí),①PD=PQ,②DQ=PQ.
【答案】(1)解:直角梯形ABCD中,AD∥BC,∠A=90°,BC=21,AB=12,AD=16,
依題意AQ=t,BP=2t,則DQ=16﹣t,PC=21﹣2t,
過(guò)點(diǎn)P作PE⊥AD于E,
則四邊形ABPE是矩形,PE=AB=12,
∴S△DPQ=DQAB=(16﹣t)×12=﹣6t+96.
(2)當(dāng)四邊形PCDQ是平行四邊形時(shí),PC=DQ,
∴21﹣2t=16﹣t解得:t=5,
∴當(dāng)t=5時(shí),四邊形PCDQ是平行四邊形.
(3)∵AE=BP=2t,PE=AB=12,
①當(dāng)PD=PQ時(shí),QE=ED=QD,
∵DE=16﹣2t,
∴AE=BP=AQ+QE,即2t=t+16﹣2t,
解得:t= ,
∴當(dāng)t=時(shí),PD=PQ
②當(dāng)DQ=PQ時(shí),DQ2=PQ2
∴t2+122=(16﹣t)2解得:t=
∴當(dāng)t=時(shí),DQ=PQ
【解析】(1)S△QDP=DQAB,由題意知:AQ=t,DQ=AD﹣AQ=16﹣t,將DQ和AB的長(zhǎng)代入,可求出S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)四邊形PCDQ為平行四邊形時(shí),PC=DQ,即16﹣t=21﹣2t,可將t求出;
(3)當(dāng)PD=PQ時(shí),可得:AD=3t,從而可將t求出;當(dāng)DQ=PQ時(shí),根據(jù)DQ2=PQ2即:t2+122=(16﹣t)2可將t求出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜邊在x軸上、斜邊長(zhǎng)分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A1(2,0),A2(1,-1),A3(0,0),則依圖中所示規(guī)律,A2017的橫坐標(biāo)為( )
A. 1010 B. 2 C. 1 D. ﹣1006
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,以AD為弦的⊙O交AB、AC于E、F,已知EF∥BC.
(1)求證:BC是⊙O的切線;
(2)若已知AE=9,CF=4,求DE長(zhǎng);
(3)在(2)的條件下,若∠BAC=60°,求tan∠AFE的值及GD長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某果園2017年水果產(chǎn)量為100噸,2019年水果產(chǎn)量為196噸,求該果園水果產(chǎn)量的年平均增長(zhǎng)率.設(shè)該果園水果產(chǎn)量的年平均增長(zhǎng)率為x,則根據(jù)題意可列方程為( 。
A. 196(1﹣x)2B. 100(1﹣x)2=196;C. 196(1+x)2=100;D. 100(1+x)2=196
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形中到三邊距離相等的點(diǎn)是( 。
A. 三條邊的中垂線交點(diǎn) B. 三條高交點(diǎn)
C. 三條中線交點(diǎn) D. 三條角平分線的交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人買(mǎi)了50元的乘車(chē)月票卡,如果此人乘車(chē)的次數(shù)用m表示,則記錄他每次乘車(chē)后的余額n元,如表:
次數(shù)m | 余額n(元) |
1 | 50﹣0.8 |
2 | 50﹣1.6 |
3 | 50﹣2.4 |
4 | 50﹣3.2 |
… | … |
(1)寫(xiě)出此人乘車(chē)的次數(shù)m表示余額n的公式;
(2)利用上述公式,計(jì)算:乘了13次車(chē)還剩多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】松雷中學(xué)校學(xué)生會(huì)干部對(duì)校學(xué)生會(huì)倡導(dǎo)的“助殘”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形高度之比為3:4:5:8:2,又知此次調(diào)查中捐15元和20元的人數(shù)共39人.
(1)他們一共抽查了多少人?
(2)若該校共有2310名學(xué)生,請(qǐng)估計(jì)全校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線AC上的兩點(diǎn),∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y=kx(k≠0)的函數(shù)值y隨x的增大而減小,則一次函數(shù)y=kx+k的圖象大致是圖中的( 。
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com