作業(yè)寶已知:△ABC為等邊三角形,AD∥BC,AD=BE.求證:△DEC為等邊三角形.

證明:∵△ABC為等邊三角形,
∴AC=BC,∠ABC=∠EBC=60°,
∵AD∥BC,
∴∠DAC=∠ABC,
∴∠DAC=EBC=60°,
在△DAC和△BEC中,
,
∴△DAC≌△BEC(SAS),
∴DC=CE,∠DCA=∠ECB,
∵∠ACB=60°,
∴∠ECD=60°,
∴△DEC為等邊三角形.
分析:首先可證明△DAC≌△BEC,由全等三角形的性質(zhì)可知:CD=CE,所以△DCE為等腰三角形,再通過(guò)證明∠DCE=60°即可得到:△DEC為等邊三角形.
點(diǎn)評(píng):本題考查了等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì).等邊三角形的判定可以通過(guò)三個(gè)內(nèi)角相等,三條邊都相等或者兩條相等的邊之間的夾角是60°等方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知,△ABC為等邊三角形,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),
求證:∠ADB=∠AFC;②請(qǐng)直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線(xiàn)上時(shí),其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請(qǐng)寫(xiě)出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;
(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長(zhǎng)線(xiàn)上時(shí),且點(diǎn)A、F分別在直線(xiàn)BC的異側(cè),其他條件不變,請(qǐng)補(bǔ)全圖形,并直接寫(xiě)出∠AFC、∠ACB、∠DAC之間存在的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:△ABC為等邊三角形,D、F分別為射線(xiàn)BC、射線(xiàn)AB邊上的點(diǎn),BD=AF,以AD為邊作等邊△ADE.
(1)如圖①所示,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí):
①試說(shuō)明:△ACD≌△CBF;②判斷四邊形CDEF的形狀,并說(shuō)明理由;
(2)如圖②所示,當(dāng)點(diǎn)D在BC的延長(zhǎng)線(xiàn)上時(shí),判斷四邊形CDEF的形狀,并說(shuō)明理由.
(3)當(dāng)點(diǎn)D在射線(xiàn)BC上移動(dòng)到何處時(shí),∠DEF=30°,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC為等邊三角形,邊長(zhǎng)為2cm,求等邊△ABC的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC為等邊三角形,點(diǎn)M是射線(xiàn)BC上任意一點(diǎn),點(diǎn)N是射線(xiàn)CA上任意一點(diǎn),且BM=CN,直線(xiàn)BN與AM相交于Q點(diǎn)
(1)觀察圖中是否有全等三角形?若有,直接寫(xiě)出:
△ABM≌△BCN
△ABM≌△BCN
;(寫(xiě)出一對(duì)即可)
(2)求∠BQM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC為等邊三角形,D,E,F(xiàn)分別是AB,BC,CA上的點(diǎn),且AD:DB=BE:EC=CF:FA.△ABC∽
△DEF
△DEF

查看答案和解析>>

同步練習(xí)冊(cè)答案